matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenVektorgeometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - Vektorgeometrie
Vektorgeometrie < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorgeometrie: aufgabe 5f)
Status: (Frage) beantwortet Status 
Datum: 16:39 Do 18.04.2013
Autor: DragoNru

Aufgabe
Wie muss der Parameter [mm] \lambda [/mm] gewählt werden, damit die Vektoren A= [mm] \vektor{1 \\ \lambda \\ 4 }, B=\vektor{-2 \\ 4 \\ 11} [/mm] und C= [mm] \vektor{-3 \\ 5 \\ 1} [/mm] komplanar sind?

Hi,

habe mit dieser Aufgabe ein kleines Problem. Der Lösungsansatz ist schon da, dass Spatprodukt (AxB)*C, nur komme ich hier nicht auf das richtige Ergebnis. Kann vielleicht einer kurz drüber schauen, ob da irgendwo ein Rechenfehler ist?

[mm] AxB=\vektor{-5\lambda \\ -19 \\ 6\lambda} [/mm]

(AxB)*C= [mm] 21\lambda-95 [/mm]

Bis hier hin konnte ich kein Rechenfehler finden, aber der muss da irgendwo sein.
Als nächsten Schritt

[mm] 0=21\lambda-95 [/mm] und dann nach lambda umstellen. Das Ergebnis ist aber falsch

Gruß

        
Bezug
Vektorgeometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Do 18.04.2013
Autor: angela.h.b.


> Wie muss der Parameter [mm]\lambda[/mm] gewählt werden, damit die
> Vektoren A= [mm]\vektor{1 \\ \lambda \\ 4 }, B=\vektor{-2 \\ 4 \\ 11}[/mm]
> und C= [mm]\vektor{-3 \\ 5 \\ 1}[/mm] komplanar sind?
> Hi,

>

> habe mit dieser Aufgabe ein kleines Problem. Der
> Lösungsansatz ist schon da, dass Spatprodukt (AxB)*C, nur
> komme ich hier nicht auf das richtige Ergebnis. Kann
> vielleicht einer kurz drüber schauen, ob da irgendwo ein
> Rechenfehler ist?

>

> [mm]AxB=\vektor{-5\lambda \\ -19 \\ 6\lambda}[/mm]

Hallo,

Dein Kreuzprodukt stimmt nicht.

Der erste Eintrag muß [mm] 11\lambda-16 [/mm] lauten,
und den dritten solltest Du auch nochmal prüfen.

LG Angela


>

> (AxB)*C= [mm]21\lambda-95[/mm]

>

> Bis hier hin konnte ich kein Rechenfehler finden, aber der
> muss da irgendwo sein.
> Als nächsten Schritt

>

> [mm]0=21\lambda-95[/mm] und dann nach lambda umstellen. Das Ergebnis
> ist aber falsch

>

> Gruß


Bezug
                
Bezug
Vektorgeometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Do 18.04.2013
Autor: DragoNru

Vielen Dank, hab mein Fehler gefunden. Jetzt stimmt alles

Bezug
        
Bezug
Vektorgeometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Do 18.04.2013
Autor: reverend

Hallo DragoNru,

> Wie muss der Parameter [mm]\lambda[/mm] gewählt werden, damit die
> Vektoren A= [mm]\vektor{1 \\ \lambda \\ 4 }, B=\vektor{-2 \\ 4 \\ 11}[/mm]
> und C= [mm]\vektor{-3 \\ 5 \\ 1}[/mm] komplanar sind?

Oder koplanar. Gibts beides, heißt auch das gleiche.

> Hi,

>

> habe mit dieser Aufgabe ein kleines Problem. Der
> Lösungsansatz ist schon da, dass Spatprodukt (AxB)*C,

Wenn Du weniger rechnen willst, nimm lieber das Spatprodukt [mm] A*(B\times{C}). [/mm]

Den Fehler hat Angela ja schon gefunden.

Grüße
reverend
 

> nur
> komme ich hier nicht auf das richtige Ergebnis. Kann
> vielleicht einer kurz drüber schauen, ob da irgendwo ein
> Rechenfehler ist?

>

> [mm]AxB=\vektor{-5\lambda \\ -19 \\ 6\lambda}[/mm]

>

> (AxB)*C= [mm]21\lambda-95[/mm]

>

> Bis hier hin konnte ich kein Rechenfehler finden, aber der
> muss da irgendwo sein.
> Als nächsten Schritt

>

> [mm]0=21\lambda-95[/mm] und dann nach lambda umstellen. Das Ergebnis
> ist aber falsch

>

> Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]