matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenVektorfeld / Gradient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Vektorfeld / Gradient
Vektorfeld / Gradient < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorfeld / Gradient: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:50 Mo 15.12.2008
Autor: dunno

Aufgabe
Für welche a>0 ist das Vektorfeld [mm] \vec{v} [/mm] : (x,y,z,) [mm] \mapsto (ln(1+x^{2}) [/mm] + [mm] ay^{2}, [/mm] xy + [mm] y^{2}, z^{3}) [/mm] von der Form [mm] \vec{v} [/mm] = grad(f) (für eine gewisse Funktion f, die nicht bestimmt werden muss)?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wenn ich ja den Von f bilde, dann leite ich den ersten Term nach x ab, den zweiten nach y etc.

da in [mm] ln(1+x^{2}) [/mm] + [mm] ay^{2} [/mm] nur ein y habe muss ja in f ein xy gewesen sein.
Ist somit a=1? Oder mache ich mir da das Leben ein bisschen zu einfach?

Wäre sehr froh um eine Antwort. Danke schon im voraus!

        
Bezug
Vektorfeld / Gradient: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Mo 15.12.2008
Autor: MathePower

Hallo dunno,

> Für welche a>0 ist das Vektorfeld [mm]\vec{v}[/mm] : (x,y,z,)
> [mm]\mapsto (ln(1+x^{2})[/mm] + [mm]ay^{2},[/mm] xy + [mm]y^{2}, z^{3})[/mm] von der
> Form [mm]\vec{v}[/mm] = grad(f) (für eine gewisse Funktion f, die
> nicht bestimmt werden muss)?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Wenn ich ja den Von f bilde, dann leite ich den ersten Term
> nach x ab, den zweiten nach y etc.
>
> da in [mm]ln(1+x^{2})[/mm] + [mm]ay^{2}[/mm] nur ein y habe muss ja in f ein
> xy gewesen sein.
> Ist somit a=1? Oder mache ich mir da das Leben ein bisschen
> zu einfach?


Ja, das ist wohl etwas zu einfach.

Wende hier doch den []Satz von Schwarz an.

Für eine zweimal stetig differenzierbare Funktion f muß gelten:

[mm]\left(f_{x}\right)_{y}=\left(f_{y}\right)_{x}[/mm]

[mm]\left(f_{x}\right)_{z}=\left(f_{z}\right)_{x}[/mm]

[mm]\left(f_{y}\right)_{z}=\left(f_{z}\right)_{y}[/mm]

,wobei

[mm]\pmat{f_{x} \\ f_{y} \\ f_{z} } = \pmat{\ln\left(1+x^{2}\right) + ay^{2} \\ xy+y^{2} \\ z^{3}}[/mm]

Mit Hilfe der obigen Gleichungen erhältst Du eine Bedingung für das "a".


>  
> Wäre sehr froh um eine Antwort. Danke schon im voraus!


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]