matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisVektorfeld - Rotation, Divergenz, Laplace-Operator
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Vektorfeld - Rotation, Divergenz, Laplace-Operator
Vektorfeld - Rotation, Divergenz, Laplace-Operator < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorfeld - Rotation, Divergenz, Laplace-Operator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:16 Fr 09.07.2004
Autor: Wessel

Hallo,

eigentlich ist meine Aufgabe hier nur ausrechnen, aber plötzlich versthet man es dann doch nicht mehr...

Sei [mm] $U\subset \IR^3$ [/mm] offen und [mm] $v=(v_1,v_2,v_3)$ [/mm] ein zweimal stetig differenzierbares Vektorfeld. Man zeige, daß

rot(rot v) = [mm] $\nabla [/mm] (div\ v) - [mm] (\Delta v_1,\Delta v_2, \Delta v_3)$. [/mm]

(Quelle: Otto Forster, Übungsbuch zur Analysis 2, Kapitel 5, Aufgabe 5d)

Dabei ist [mm] $\nabla$ [/mm] der Gradient und [mm] $\Delta$ [/mm] der Laplace-Operator.

OK, linke seite der Gleichung ist kein Problem. Man rechnet nach der Formel erst die Rotation von v aus, dann die Rotation der Rotation von v. Man erhält also wieder einen Vektor der Dimension 3.

Wenn ich mich auf die rechte Seite der Gleichung stürze, stehe ich aber auf dem Schlauch. Ich soll den gradienten der Divergenz von v bilden. Nach meinen Formeln ist die Divergenz

$ div\  v =  [mm] \summe_{i=1}^{3} \bruch{\partial v_i}{\partial x_i}$ [/mm]

Ich gestehe, ich sehe hier lediglich einen Vektor der Dimension 1 - also eine Zahl in [mm] $\IR$. [/mm] Wenn ich nun hier noch den Gradienten bilde - na, dann ist das einfach wieder eine Zahl. Folglich steht nach meinen Überlegungen auf der rechten Seite der Gleichung

(Vektor der Dimension 1) - (Vektor der Dimension 3).

Mmmh... Ist das den überhaupt definiert?

Freue mich, wenn jemand mir den Schlauch unter den Füßen wegzieht...

        
Bezug
Vektorfeld - Rotation, Divergenz, Laplace-Operator: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Fr 09.07.2004
Autor: e.kandrai

Gut, dann schauen wir uns mal die rechte Seite an.
Also: nach deiner Formel ist die Divergenz also die angegebene Summe. Ergibt also ein Polynom (oder, wenn diese partiellen Ableitungen alle =0 sind, eine Zahl - aer davon gehen wir hier nicht aus). Wird haben also ein Polynom (durch die Divergenz gebildet worden) - und davon bestimmen wir den Gradienten --- und das ergibt einen: genau. Vektor. Der Gradient einer skalarwertigen mehrdim-Funktion ist doch der Vektor seiner partiellen Ableitungen.

Bezug
                
Bezug
Vektorfeld - Rotation, Divergenz, Laplace-Operator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Fr 09.07.2004
Autor: Wessel

OK., danke! Das Stichwort war Polynom!

Mit anderen Worten ist dann der Gradient:

grad(div v) = grad( $ [mm] \summe_{i=1}^{3} \bruch{\partial v_i}{\partial x_i}$ [/mm] )
$ = ( [mm] \bruch{\partial}{\partial x_1} \summe_{i=1}^{3} \bruch{\partial v_i}{\partial x_i}, \bruch{\partial}{\partial x_2} \summe_{i=1}^{3} \bruch{\partial v_i}{\partial x_i}, \bruch{\partial}{\partial x_3} \summe_{i=1}^{3} \bruch{\partial v_i}{\partial x_i})$ [/mm]

Und die rechte Seite der Gleichung löst sich auf in

$ [mm] \nabla [/mm] (div\ v) - [mm] (\Delta v_1,\Delta v_2, \Delta v_3) [/mm] = $
$( [mm] \bruch{\partial}{\partial x_1} \summe_{i=1}^{3} \bruch{\partial v_i}{\partial x_i}, \bruch{\partial}{\partial x_2} \summe_{i=1}^{3} \bruch{\partial v_i}{\partial x_i}, \bruch{\partial}{\partial x_3} \summe_{i=1}^{3} \bruch{\partial v_i}{\partial x_i}) [/mm] - ( [mm] \bruch{\partial}{\partial x_1} \bruch{\partial v_1}{\partial x_1}, \bruch{\partial}{\partial x_2} \bruch{\partial v_2}{\partial x_2}, \bruch{\partial}{\partial x_3} \bruch{\partial v_3}{\partial x_3})$ [/mm]

Oder interpretiere ich den letzten Vektor falsch?

Danke,

Bezug
                        
Bezug
Vektorfeld - Rotation, Divergenz, Laplace-Operator: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Fr 09.07.2004
Autor: Paulus

Hallo Wessel

> OK., danke! Das Stichwort war Polynom!
>  
> Mit anderen Worten ist dann der Gradient:
>  
> grad(div v) = grad( [mm]\summe_{i=1}^{3} \bruch{\partial v_i}{\partial x_i}[/mm]
> )
> [mm]= ( \bruch{\partial}{\partial x_1} \summe_{i=1}^{3} \bruch{\partial v_i}{\partial x_i}, \bruch{\partial}{\partial x_2} \summe_{i=1}^{3} \bruch{\partial v_i}{\partial x_i}, \bruch{\partial}{\partial x_3} \summe_{i=1}^{3} \bruch{\partial v_i}{\partial x_i})[/mm]
>  
>
> Und die rechte Seite der Gleichung löst sich auf in
>  
> [mm]\nabla (div\ v) - (\Delta v_1,\Delta v_2, \Delta v_3) =[/mm]
> [mm]( \bruch{\partial}{\partial x_1} \summe_{i=1}^{3} \bruch{\partial v_i}{\partial x_i}, \bruch{\partial}{\partial x_2} \summe_{i=1}^{3} \bruch{\partial v_i}{\partial x_i}, \bruch{\partial}{\partial x_3} \summe_{i=1}^{3} \bruch{\partial v_i}{\partial x_i}) - ( \bruch{\partial}{\partial x_1} \bruch{\partial v_1}{\partial x_1}, \bruch{\partial}{\partial x_2} \bruch{\partial v_2}{\partial x_2}, \bruch{\partial}{\partial x_3} \bruch{\partial v_3}{\partial x_3})[/mm]
>  
>
> Oder interpretiere ich den letzten Vektor falsch?

[daumenhoch] Genau so ist es! [daumenhoch]

Mit lieben Grüssen

Bezug
                                
Bezug
Vektorfeld - Rotation, Divergenz, Laplace-Operator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:13 Fr 09.07.2004
Autor: Wessel

Danke fürs rübergucken, Paulus.

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]