matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra/GeometrieVektorenrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra/Geometrie" - Vektorenrechnung
Vektorenrechnung < Lineare Algebra/Geom < Zentralabi NRW < VK Abivorbereitungen < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra/Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorenrechnung: Lage zweier Graden zueinander
Status: (Frage) beantwortet Status 
Datum: 20:03 Mi 17.03.2010
Autor: Nehlja

Hallo,
Es geht um folgende zwei Aufgaben:
1.) Ich habe einmal die Gerade g die durch die Punkte B (0/4/1) und A (2/2/0) läuft und die Gerade h die durch die Punkte C(1/4/0) und D (0/1/2) geht.  

2.)Die Gerade g läuft durch B(3/4/0) und E(1,5/4/0)und die Gerade h durch A(3/0/0) und F(0/4/1)

Die Fragestellung ist nun, ob die Geraden sich schneiden.

Ich denke eigentlich alles verstanden zu haben, bin aber unsicher ob ich wirklich die richtigen Ergebnisse herausbekommen habe. Nachdem ich die Geradenleichungen aufgestellt  und gleichgesetzt habe, kam bei mir bei beiden Aufgaben eine leere Lösungsmenge heraus und somit wären in beiden Fällen die Geraden windschief. Stimmt das?
Wäre echt sehr sehr nett, wenn das jemand für mich überprüfen könnte.
Vielen Dank schon mal im Vorraus!

Lg
Nehlja

        
Bezug
Vektorenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Mi 17.03.2010
Autor: abakus


> Hallo,
>  Es geht um folgende zwei Aufgaben:
>  1.) Ich habe einmal die Gerade g die durch die Punkte B
> (0/4/1) und A (2/2/0) läuft und die Gerade h die durch die
> Punkte C(1/4/0) und D (0/1/2) geht.  
>
> 2.)Die Gerade g läuft durch B(3/4/0) und E(1,5/4/0)und die
> Gerade h durch A(3/0/0) und F(0/4/1)
>  
> Die Fragestellung ist nun, ob die Geraden sich schneiden.
>  
> Ich denke eigentlich alles verstanden zu haben, bin aber
> unsicher ob ich wirklich die richtigen Ergebnisse
> herausbekommen habe. Nachdem ich die Geradenleichungen
> aufgestellt  und Gleichgesetzt habe, kam bei mir bei beiden
> Aufgaben eine leere Lösungsmenge heraus und somit wären
> in beiden Fällen die Geraden windschief. Stimmt das?
>  Wäre echt sehr sehr net, wenn das jemand für mich
> überprüfen könnte.
> Vielen Dank schon mal im Vorraus!
>  
> Lg
>  Nehlja

Hallo,
du hast deinen Lösungsweg leider nicht vorgestellt (und ich habe keine Lust, die Aufgabe komplett selbst zu rechnen).
Deshalb nur soviel:
Wenn du in beiden Geraden den selben Parameter (bestimmt t?) verwendest, wirst du den Schnittpunkt nicht finden (selbst wenn sie sich wirklich schneiden sollten).
Nenne den Parameter in der einen Geradengleichung "s" und den in der anderen Gleichung "t".
Dann kann ein vorhandener Schnittpunkt auch gefunden werden.
Gruß Abakus


Bezug
                
Bezug
Vektorenrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:23 Mi 17.03.2010
Autor: Nehlja

ja, ich habe die Parameter [mm] \lambda [/mm] und [mm] \mu [/mm] genannt.
bei 1.)
sieht der Lösungsweg so aus:
2/2/0 + [mm] \lambda [/mm] -2/2/2 = 1/4/0 + [mm] \mu [/mm]

wenn ich dann [2]-[3] rechne kann ich nach [mm] \mu=0 [/mm] auflösen.
Das eingesetzt in [1] und [2] ergibt zum einen für [mm] \lambda=-\bruch{1}{2} [/mm] und zum anderen [mm] \lambda= [/mm] 1

somit wäre ja die Windschiefe ja eigentlich belegt



Bezug
                        
Bezug
Vektorenrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 Mi 17.03.2010
Autor: abakus


> ja, ich habe die Parameter [mm]\lambda[/mm] und [mm]\mu[/mm] genannt.
> bei 1.)
> sieht der Lösungsweg so aus:
> 2/2/0 + [mm]\lambda[/mm] -2/2/2 = 1/4/0 + [mm]\mu[/mm]

Hallo,
hinter [mm] \mu [/mm] muss auch noch ein Vektor stehen.
Dein Vektor [mm] \vektor{-2\\2\\2} [/mm] ist fehlerhaft.

>  
> wenn ich dann [2]-[3] rechne kann ich nach [mm]\mu=0[/mm]
> auflösen.
>  Das eingesetzt in [1] und [2] ergibt zum einen für
> [mm]\lambda=-\bruch{1}{2}[/mm] und zum anderen [mm]\lambda=[/mm] 1
>  
> somit wäre ja die Windschiefe ja eigentlich belegt
>  
>  


Bezug
                                
Bezug
Vektorenrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:55 Mi 17.03.2010
Autor: Nehlja

Oh sorry, hinter [mm] \mu [/mm] -1/-3/2
aber wieso ist -2/2/2 falsch? ich habe gelernt, dass man um den Richtungsvektor zu erhalten, die Koordinaten von B-A rechnen muss. demnach wäre der Vektor -2/2/2
Ah, ich seh gerade ich habe ausversehen oben für B(0/4/1) angegeben. B hat die Koordinaten (0/4/2). ist es dann richtig?

Bezug
        
Bezug
Vektorenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Mi 17.03.2010
Autor: metalschulze

Hallo,
ja stimmt. Eine leere Menge heisst aber nicht automatisch, dass die Geraden windschief sind - Stichwort parallel.
Gruss Christian

Bezug
                
Bezug
Vektorenrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 Mi 17.03.2010
Autor: Nehlja

Vielen Dank!
Parallelität und Identität waren schon ausgeschlossen, weil die Richtungsvektoren linear unabhängig sind ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra/Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]