matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektoren eine Basis von U bild
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Vektoren eine Basis von U bild
Vektoren eine Basis von U bild < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren eine Basis von U bild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:05 Do 08.06.2006
Autor: Roykiller

Aufgabe
Sei U der lineare Teilraum des euklidischen Vektorraumes R4., der durch folgende homogene Gleichung gegeben ist:
x1+x2+x3+x4=0
a)Zeigen Sie, dass die folgenden Vektoren eine Basis von U bilden.
b1= (1,-1,1,-1) b2=(3,1,-1,-3) b3= (3,-1,-1,-1)
b)Berechnen Sie hieraus mit Hilfe des Schmidtschen Orthogonalisierungsverfahrens eine Orthogonalbasis.

Also bitte euch um Rat oder Hilfestellung zur dieser Aufgabe.

Danke im voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Vektoren eine Basis von U bild: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 Do 08.06.2006
Autor: djmatey

Hallo,
man stellt zunächst fest, dass die drei Vektoren in U liegen, da die Summe ihrer Komponenten jeweils 0 ergibt.
Dann musst Du zeigen, dass b1,b2,b3 linear unabhängig sind, d.h. dass aus
x*b1+y*b2+z*b3=0 schon x=y=z=0 folgt.
Das sollte kein Problem sein, da Du aus dieser Gleichung ja schon ein Gleichungssystem aus 4 Gleichungen mit drei Unbekannten erhältst (einfach b1,b2, b3 in die Gleichung einsetzen und die 4 von x,y,z abhängigen Gleichungen betrachten und ineinander einsetzen).
Jetzt bleibt füra) nur noch zu zeigen, dass b1,b2,b3 ein Erzeugendensystem bilden, d.h. jeder beliebige Vektor aus U als Linearkombination der drei Vektoren b1,b2,b3 dargestellt werden kann, also zu zeigen ist, dass x,y,z existieren mit
[mm] \vektor{x_{1}\\x_{2}\\x_{3}\\x_{4}} [/mm] = x*b1+y*b2+z*b3,
wobei [mm] x_{1}+x_{2}+x_{3}+x_{4}=0 [/mm] ist.

Zu b):
Reine Rechenarbeit - die einzelnen Schritte des Orthogonalisierungsverfahrens bzw. Orthonormalisierungsverfahrens kannst Du z.B. auf
http://www-ifm.math.uni-hannover.de/~ebeling/LA-B/LAB110602.pdf
nachlesen.

LG Matthias.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]