matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektoren / Verständnisfrage
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Vektoren / Verständnisfrage
Vektoren / Verständnisfrage < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren / Verständnisfrage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Di 27.11.2007
Autor: SusanneK

Aufgabe
Geben Sie ein Beispiel für 3 verschiedene Vektoren [mm] v_1, v_2, v_3 \in \IR^2 [/mm] so dass [mm] \vektor{1\\0}, v_1 [/mm] und [mm] \vektor{1\\0}, v_2 [/mm] und [mm] \vektor{1\\0}, v_3 [/mm] Basen von [mm] \IR^2 [/mm] sind.

Hallo, ich habe diese Frage in keinem anderen Forum gestellt.

Ich verstehe nicht, was [mm] \vektor{1\\0},v_1 [/mm] bedeutet.
Muss ich [mm] v_1 [/mm] mit [mm] \vektor{1\\0} [/mm] addieren ?

Danke, Susanne.

        
Bezug
Vektoren / Verständnisfrage: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Di 27.11.2007
Autor: weduwe

hallo susanne,
wenn ich es richtig verstehe, sollst du jeweils einen (anderen) vektor finden, der von [mm] \vektor{1\\0} [/mm] linear unabhängig ist.
z.b [mm] \vec{v}_1=\vektor{0\\1} [/mm]

Bezug
                
Bezug
Vektoren / Verständnisfrage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Di 27.11.2007
Autor: SusanneK

Hallo weduwe,
vielen Dank für Deine Hilfe !

> hallo susanne,
>  wenn ich es richtig verstehe, sollst du jeweils einen
> (anderen) vektor finden, der von [mm]\vektor{1\\0}[/mm] linear
> unabhängig ist.
>  z.b [mm]\vec{v}_1=\vektor{0\\1}[/mm]  

Ist das eine offizielle Schreibweise dafür ?

LG, Susanne.


Bezug
                        
Bezug
Vektoren / Verständnisfrage: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Di 27.11.2007
Autor: tobbi

Hallo Susanne,

unter einer Basis versteht man eine Menge von Vektoren B, die für einen gegebenen Vektorraum V die folgenden 2 Bedingungen erfüllen:

1) Jeder Vektor in V lässt sich darstellen als Linearkombination der  Basisvektoren

2) die Vektoren in B sind paarweise linearunabhängig.

In deinem Beispiel ist als Vektorraum der [mm] \IR^{2} [/mm] gegeben. Die gesuchten Vektoren müssen also als linearkombination jeden beliebigen 2-dimensionalen Vektor ergeben und untereinander linear unabhängig sein.

Der von weduwe angegebene Vektor erfüllt dies offensichtlich, so dass du diesen z.b. als [mm] v_{1} [/mm] verwenden könntest.

Hoffe obiges hilft dir weiter. Schöne Grüße
Tobbi

Bezug
                                
Bezug
Vektoren / Verständnisfrage: Danke !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:31 Di 27.11.2007
Autor: SusanneK


> In deinem Beispiel ist als Vektorraum der [mm]\IR^{2}[/mm] gegeben.
> Die gesuchten Vektoren müssen also als linearkombination
> jeden beliebigen 2-dimensionalen Vektor ergeben und
> untereinander linear unabhängig sein.
>  
> Der von weduwe angegebene Vektor erfüllt dies
> offensichtlich, so dass du diesen z.b. als [mm]v_{1}[/mm] verwenden
> könntest.

Hallo Tobbi, jetzt hab ich es verstanden !
VIELEN DANK !

LG, Susanne.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]