matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungVektoren Aufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Vektoren Aufgabe
Vektoren Aufgabe < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren Aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Di 24.03.2009
Autor: tj09

Aufgabe
[Dateianhang nicht öffentlich]

Ich habe ne Frage zu der oben genannten Frage.
a habe ich komplett.

b) Da fehlt mir gerade der Ansatz... für beide Fragen

c) Bei der Rotation... Ist das richtig, das dann von A senkrecht auf die gerade der Mittelpunkt des Kreises ist? Also wenn ich das Lot von a auf g fallen lasse...und dann wäre ja A bis zum Lotfußbpunkt der Radius des Kreises ne?

Und V ermittel ist dann mit = [mm] \bruch{\pi}{3} [/mm] * [mm] r^2 [/mm] *h
h wäre dann von S bis zu dem Lotfußpunkt...

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Vektoren Aufgabe: Aufgabe b)
Status: (Antwort) fertig Status 
Datum: 16:50 Di 24.03.2009
Autor: Zwerglein

Hi, tj09,

> b) Da fehlt mir gerade der Ansatz... für beide Fragen

Also: Es gibt 3 Möglichkeiten dafür, dass das Dreieck ABP rechtwinklig ist:
(1) Der rechte Winkel könnte bei A liegen oder
(2) bei B oder
(3) bei P (bzw. Q).
Letzteres soll laut Aufgabenstellung zu einem Widerspruch gebracht werden: Bei P (bzw. Q) liegt der rechte Winkel nie.

Also nehmen wir einen beliebigen Punkt der [mm] x_{3}-Achse: [/mm] P(0/0/p).
(1) Wenn der rechte Winkel bei A liegt, dann müssen die Vektoren [mm] \overrightarrow{AB} [/mm] und [mm] \overrightarrow{AP} [/mm] senkrecht aufeinander stehen; demnach muss ihr Skalarprodukt =0 sein:
[mm] \overrightarrow{AB} \circ \overrightarrow{AP} [/mm] = 0.
Daraus kannst Du die dritte Koordinate von P, also p, ermitteln.

(2) Wenn der rechte Winkel bei B liegt, dann müssen die Vektoren [mm] \overrightarrow{BA} [/mm] und [mm] \overrightarrow{BP} [/mm] senkrecht aufeinander stehen; demnach muss deren Skalarprodukt =0 sein:
[mm] \overrightarrow{BA} \circ \overrightarrow{BP} [/mm] = 0.
Daraus kannst Du wieder die dritte Koordinate von P, also p, ermitteln.

(3) Hier führt der analoge Ansatz [mm] \overrightarrow{PA} \circ \overrightarrow{PB} [/mm] = 0 zu einem Widerspruch, nämlich zu einer quadratischen Gleichung ohne Lösung.

mfG!
Zwerglein


Bezug
                
Bezug
Vektoren Aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Di 24.03.2009
Autor: tj09

Okay, vielen dank, das passt nun, kannst du mir auch was zu meiner zweiten Fragen sagen?

Bezug
        
Bezug
Vektoren Aufgabe: Aufgabe c)
Status: (Antwort) fertig Status 
Datum: 20:15 Di 24.03.2009
Autor: Zwerglein

Nochmals: Hi, tj09,

> c) Bei der Rotation... Ist das richtig, dass dann von A
> senkrecht auf die Gerade der Mittelpunkt des Kreises ist?
> Also wenn ich das Lot von a auf g fallen lasse...und dann
> wäre ja A bis zum Lotfußbpunkt der Radius des Kreises ne?

Das Lot musst Du gar nicht fällen, denn in der Aufgabe musst Du zeigen, dass B der Schnittpunkt von g und E ist; damit ist B dieser Lotfußpunkt und der Radius des Kreises ist:
r = [mm] \overline{AB} [/mm]

> Und V ermittel ist dann mit = [mm]\bruch{\pi}{3}[/mm] * [mm]r^2[/mm] *h
> h wäre dann von S bis zu dem Lotfußpunkt...  

Richtig! Und da B dieser Punkt ist, ergibt sich:
h = [mm] \overline{SB} [/mm]

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]