matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesVektoren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Vektoren
Vektoren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Di 02.06.2009
Autor: Gamma1987

Aufgabe
Es seien die beiden Vektoren x ={ -1 [mm] \\ [/mm] 3 [mm] \\ [/mm] -2 }
und y = { 1 [mm] \\ [/mm] 0 [mm] \\ [/mm] 2 }
gegeben.
Bestimmen Sie einen zu x und y senkrechten Vektor der Länge 4√5.

Hi!!
habe soweit die Gleichungen aufgestellt:

I    0 = n • x = -1 · n1 + 3 · n2 - 2 · n3
II   0 = n • y = 1 · n1               + 2 · n3
III  [mm] 4\wurzel{5} [/mm] = n • n = n1 · n1 + n2 · n2 + n3 · n3


will ich I und II auflösen, so komme ich auf n3 und n2 gleich 0

ist das korrekt?
bzw was mache ich falsch und die geht es richtig°?

besten dank schon mal
gamma


PS. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Vektoren: Korrektur
Status: (Antwort) fertig Status 
Datum: 13:59 Di 02.06.2009
Autor: Roadrunner

Hallo Gamma!


Das verstehe ich nicht: wenn man (I) und (II) addiert, erhalte ich [mm] $n_2 [/mm] \ = \ 0$ .

Zudem muss es auf der linken Seite von (III) heißen:
[mm] $$\left(4*\wurzel{5} \ \right)^2 [/mm] \ = \ 80$$

Gruß vom
Roadrunner


Bezug
                
Bezug
Vektoren: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:25 Di 02.06.2009
Autor: Gamma1987

ja, n2 = 0 und wenn ich das in die gleichung einsetze erhalte ich n3= 0 ebenso.

ja, das mit dem 80 stimmt sorry
ich weiß einfach nicht, wie ich weitermachen soll

Bezug
                        
Bezug
Vektoren: bitte vorrechnen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:31 Di 02.06.2009
Autor: Roadrunner

Hallo Gamma!


> ja, n2 = 0 und wenn ich das in die gleichung einsetze
> erhalte ich n3= 0 ebenso.

Das verstehe ich nicht ... kannst Du das mal bitte vorrechnen?


Gruß vom
Roadrunner


Bezug
                                
Bezug
Vektoren: Idee
Status: (Frage) beantwortet Status 
Datum: 16:23 Di 02.06.2009
Autor: Gamma1987

also:

I      0 = n • x =    -1 · n1 + 3 · n2 - 2 · n3
II     0 = n • y =     1 · n1               + 2 · n3
III   80= n • n =    n1 · n1 + n2 · n2 + n3 · n3


II nach n1 auflösen:  n1 = -2n3
und in I einsetzen           = 2n3 + 3n2 - 2n3
                                        =3n2


so meinte ich das. und da ja I = 0 ist sind n2 sowie n3 auch null. oder?

Bezug
                                        
Bezug
Vektoren: Hinweise
Status: (Antwort) fertig Status 
Datum: 16:28 Di 02.06.2009
Autor: weightgainer


> also:
>
> I      0 = n • x =    -1 · n1 + 3 · n2 - 2 · n3
> II     0 = n • y =     1 · n1               + 2 · n3
> III   80= n • n =    n1 · n1 + n2 · n2 + n3 · n3
>
>
> II nach n1 auflösen:  n1 = -2n3
>  und in I einsetzen           = 2n3 + 3n2 - 2n3
> =3n2
>  
>
> so meinte ich das. und da ja I = 0 ist sind n2 sowie n3
> auch null. oder?

Naja, [mm] n_2 [/mm] ist schon 0, aber dann bleiben doch noch die beiden Gleichungen:
II: [mm]n_1+2*n_3 = 0 \Rightarrow n_1=-2*n_3[/mm]
III: [mm]n_1^{2} + n_3^{2} = 80[/mm]
Jetzt II in III einsetzen:
[mm]4*n_3^{2} + n_3^{2} = 80[/mm]
Nach [mm]n_3[/mm] auflösen, damit [mm]n_1[/mm] ausrechnen und fertig :-).

Gruß,
weightgainer

Bezug
                                                
Bezug
Vektoren: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:42 Di 02.06.2009
Autor: Gamma1987

also als Lösung sollte (8,0,-4) rauskommen???

Bezug
                                                        
Bezug
Vektoren: eine Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:52 Di 02.06.2009
Autor: Roadrunner

Hallo Gamma!


[ok] Das ist eine mögliche Lösung. Es gibt aber noch eine zweite ...


Gruß vom
Roadrunner


Bezug
                                                                
Bezug
Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:57 Di 02.06.2009
Autor: Gamma1987

ich möchte doch eigentlich nur wissen, wie ich auf die lösung komme, was ich da rechnen muss, weil ich grad total überfordert mit der aufgabe bin.
wie komme ich auf die 8, wie auf die 0?
tut mir echt leid, aber ich versteh das keinen meter mehr....

Bezug
                                                                        
Bezug
Vektoren: siehe oben!
Status: (Antwort) fertig Status 
Datum: 18:11 Di 02.06.2009
Autor: Roadrunner

Hallo Gamma!


Siehe oben, da hat Dir Weightgainer doch die Gleichungen genannt.

Den Wert [mm] $n_2 [/mm] \ = \ 0$ hast Du ja bereits selber ermittelt.


Löse also zunächst die Gleichung [mm] $4*n_3^2+n_3^2 [/mm] \ = \ [mm] 5*n_3^2 [/mm] \ = \ 80$ nach [mm] $n_3 [/mm] \ = \ ...$ auf.
Hieraus ergeben sich zwei unterschiedliche Lösungen, die Du in die Gleichung [mm] $n_1 [/mm] \ = \ [mm] -2*n_3$ [/mm] einsetzt ... fertig.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]