matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenVektoranalysis in der Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Vektoranalysis in der Ebene
Vektoranalysis in der Ebene < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoranalysis in der Ebene: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 10:45 Sa 01.02.2014
Autor: Die-Ninni

Aufgabe
Berechnen Sie für das ebene Vektorfeld [mm] \overrightarrow{F}=\vektor{-y \\ x} [/mm] den Wert des Kurvenintegrals längs des Weges [mm] y_{x}=\wurzel{2x} [/mm] der A (0;0) mit B (2,2) verbindet.

Ich hab da irgendwie überhaupt keinen Lösungsansatz und steh ganz schön auf dem Schlauch, könnte mir hier jemand weiterhelfen?

        
Bezug
Vektoranalysis in der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Sa 01.02.2014
Autor: Richie1401

Hallo,

du sollst das vektorielle Kurvenintegral berechnen. Die entsprechende Formel lautet dazu:

   [mm] \int_\gamma{F(x,y)}d(x,y):=\int_a^bdt [/mm]

Dein Vektorfeld ist klar: [mm] F=\vektor{-y\\x} [/mm]

Nun muss man noch die Kurve ermitteln. Das ist aber gar nicht so schwer, denn generell hast du alles gegeben:

Der Ursprung soll mit dem Punkt (2,2) über die Funktion [mm] y_x=\sqrt{2x} [/mm] verbunden sein, dann ist doch

   [mm] \gamma(t)=(x,y)=(t,\sqrt{2t}),\ t\in[0,2] [/mm]

So, nun wäre dein Job einfach die Kurve zu differenzieren und  die Formel anzuwenden.

Wenn du noch weitere Fragen hast, dann kannst du sie ja gerne stellen.

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]