matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesVektoranalysis Grundlagen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Vektoranalysis Grundlagen
Vektoranalysis Grundlagen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoranalysis Grundlagen: Verständnis
Status: (Frage) beantwortet Status 
Datum: 14:20 Fr 05.10.2012
Autor: EvelynSnowley2311

huhu zusammen,

ich arbeite mich grade selbstständig in das Thema Vektoranalysis rein und bin mir nicht sicher ob ich eine Sache ganz richtig verstehe:

Umparametrisierung





folgendes Beispiel:

p(t) = ( sin(t), cos(t) )  ,t [mm] \in [/mm] [0, [mm] \pi/4 [/mm] ]

ist äquivalent zu

q(t) = ( [mm] \bruch{t}{\wurzel{1+t^2}} [/mm] , [mm] \bruch{1}{\wurzel{1+t^2}} [/mm] ) , t [mm] \in [/mm] [0,1]


q(r(t)) = p(t)
Umparametrisierung:
r(t) : [0, [mm] \pi/4 [/mm] ] [mm] \to [/mm] [0,1]
p(t) = tan (t)


Wieso sind p(t) und q(t) äquivalent? Beschreiben sie in ihrem Wertebereich die gleiche Kurve?
Und wieso habe ich am Ende eine andere Funktion p(t) ?
Ändere ich einfach durch die Umparametrisierung den Wertebereich?


        
Bezug
Vektoranalysis Grundlagen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Fr 05.10.2012
Autor: Helbig

Hallo EvelynSnowley2311,

> Umparametrisierung
> folgendes Beispiel:
>  
> p(t) = ( sin(t), cos(t) )  ,t [mm]\in[/mm] [0, [mm]\pi/4[/mm] ]
>  
> ist äquivalent zu
>  
> q(t) = ( [mm]\bruch{t}{\wurzel{1+t^2}}[/mm] ,
> [mm]\bruch{1}{\wurzel{1+t^2}}[/mm] ) , t [mm]\in[/mm] [0,1]
>  
>
> q(r(t)) = p(t)
>  Umparametrisierung:
>  r(t) : [0, [mm]\pi/4[/mm] ] [mm]\to[/mm] [0,1]
>  p(t) = tan (t)

Dies muß wohl [mm] $\red r(t)=\tan [/mm] t$ heißen.

>
>
> Wieso sind p(t) und q(t) äquivalent? Beschreiben sie in
> ihrem Wertebereich die gleiche Kurve?

Die beiden Funktionen haben denselben Wertebereich oder besser, dasselbe Bild, aber unterschiedliche Definitionsbereiche, nämlich die Parameterintervalle [mm] $[0;\pi/4]$ [/mm] und $[0;1]$. Äquivalent sind sie, weil es eine bijektive, stetige Abbildung $r$ von einem Interval auf das andere gibt, so daß $q(r(t)) = p(t)$ für jedes [mm] $t\in [0;\pi/4]$ [/mm] gilt. Vielleicht solltest Du dies mal nachprüfen. Hierzu brauchst Du nicht viel mehr als [mm] $\tan [/mm] = [mm] \frac \sin \cos$ [/mm] und [mm] $\cos [/mm] > 0$ auf [mm] $[0;\pi/4]$. [/mm]

>  Und wieso habe ich am Ende eine andere Funktion p(t) ?

Das ist nur der Tipfehler!

>  Ändere ich einfach durch die Umparametrisierung den
> Wertebereich?

Gerade nicht!

Gruß,
Wolfgang

Bezug
                
Bezug
Vektoranalysis Grundlagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 Fr 05.10.2012
Autor: EvelynSnowley2311

Huhu Helbig,

danke für die schnelle Antwort.
Also ist eine Umparametrisierung einer Funktion p(t) und q(t) möglich, wenn ich eine stetig diffb. Funktion r(t) finden kann, sodass (beispielsweise) die Komposition von q und r  p ist. Kann man eine solche Funktion r immer finden? zu jeder gegebenen Funktion p und q?

Bezug
                        
Bezug
Vektoranalysis Grundlagen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Fr 05.10.2012
Autor: Helbig

Hallo EvelynSnowley2311,

>  Also ist eine Umparametrisierung einer Funktion p(t) und
> q(t) möglich, wenn ich eine stetig diffb. Funktion r(t)
> finden kann, sodass (beispielsweise) die Komposition von q
> und r  p ist.

Es fehlt noch, daß $r$ bijektiv sein muß.

> Kann man eine solche Funktion r immer finden?

Nein. Sondern nur wenn $p$ und $q$ äquivalent sind. Insbesondere müssen beide dasselbe Bild haben. Nimm mal $p(t) = (t, t)$ mit dem Parameterinterval $[0,1]$ und $q(t)=(t,t)$ mit dem Parameterintervall $[2,3]$. Dann gibt es überhaupt kein $t$, so daß $p(r(t))=q(t)$, da ja die beiden Komponenten von $q(t)$ in $[2, 3]$ liegen, aber die beiden Komponenten von $p(r(t))$ in $[0;1]$-Egal wie $r$ aussieht. Wenn sich die Bilder von $q$ und $p$ unterscheiden, können sie nicht äquivalent sein.

Gruß,
Wolfgang

Bezug
                                
Bezug
Vektoranalysis Grundlagen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 Fr 05.10.2012
Autor: EvelynSnowley2311

ah jetzt wird mir einiges klar, danke dir für das tolle Beispiel!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]