matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeVektor spiegeln / drehen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Vektor spiegeln / drehen
Vektor spiegeln / drehen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor spiegeln / drehen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:38 Mi 05.11.2008
Autor: Tobus

Aufgabe
Gegeben ist der Punkt P mit Ortsvektor [mm] \vektor{2 \\ -1 \\ 2}. [/mm] In welche Punkte geht P bei folgenden Abbildungen über:

a) Spiegelung an der Ebene y=1
b) Spiegelung an der Ebene x-2y+z=0
c) 120 Grad Drehung um die z-Achse

Geben sie jeweils die Koordinaten des Bildpunktes an

Hallo,
a), b)
ich habe hier leider so meine Probleme, da ich inzwischen schon wieder vergessen habe, wie ich einen Vektor spiegeln kann.

c)
hier ist mir spontan die Drehmatrix eingefallen, also:

[mm] \pmat{ cos(l) & -sin(l) & 0 \\ sin(l) & cos(l) & 0 \\ 0 & 0 & 1 } [/mm] * [mm] \vektor{2 \\ -1 \\ 2} [/mm] wobei l=120 Grad = [mm] \bruch{2}{3} [/mm] * [mm] \pi [/mm]

Stimmt dieser Ansatz schonmal ?

Edit: Als resultierenden Vektor bekomme ich gerundet [mm] \vektor{2 \\ -0,9 \\ 2}. [/mm] Warum stimmt das nicht ?

DANKE

        
Bezug
Vektor spiegeln / drehen: a) und b)
Status: (Antwort) fertig Status 
Datum: 13:28 Mi 05.11.2008
Autor: M.Rex

Hallo

Zu a und b

Bestimme mal jeweils folgende "Hilfsgerade"

[mm] g:\vec{x}=\vektor{2\\-1\\2}+\lambda*\vec{n_{E}} [/mm]

[mm] \vec{n_{E}} [/mm] ist der Normalenvektor der Spiegelebene

Ich rechen dir mal Fall b etwas ausführlicher vor

Hier ist [mm] \vec{n_{E}}=\vektor{1\\-2\\1} [/mm]

Also ist hier g: [mm] \vec{x}=\vektor{2\\-1\\2}+\lambda*\vektor{1\\-2\\1} [/mm]

Und von dieser Geraden bestimmst du das [mm] \lambda, [/mm] das dir den Schnittpunkt mit der Ebenen geben würde.

Also setze mal g in E ein, und bestimme damit [mm] \lambda. [/mm]

Hier also:

[mm] 1(2+\lambda)-2(-1-2\lambda)+1(2+\lambda)=0 [/mm]
[mm] \gdw 6+6\lambda=0 [/mm]
[mm] \gdw \lambda=-1 [/mm]

Hast du diesen Wert für [mm] \lambda [/mm] , verdoppele diesem mal, da du von P aus "zweimal die Strecke P-Ebene" gehen musst.

Also bestimmst du den Spiegelpunkt Q

[mm] \vec{q}=\vektor{2\\-1\\2}+\red{2}*\lambda*\vektor{1\\-2\\1} [/mm]
hier:
[mm] \vec{q}=\vektor{2\\-1\\2}-2*\vektor{1\\-2\\1} [/mm]
[mm] =\vektor{0\\3\\0} [/mm]

(Sofern ich richtig gerechnet habe)

Marius

Bezug
                
Bezug
Vektor spiegeln / drehen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:41 Mi 05.11.2008
Autor: Tobus

ahh ok, jetzt weiß ichs wieder !!

edit:
was mir noch nicht ganz klar ist, warum ich die strecke 2 mal gehen muss ? könntest du mir da nochmals helfen ?

DANKE

Bezug
                        
Bezug
Vektor spiegeln / drehen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:05 Do 06.11.2008
Autor: M.Rex

Hallo

Mit [mm] \vec{p}+\lambda*\vec{n_{E}} [/mm] "triffst" du den Schnittpunkt F der  Gerade mit der Ebene.

Der Spiegelpunkt liegt aber auf der anderen Seite der Ebene und zwar genausoweit von dieser entfernt, wie der Ursprungspunkt.

[mm] \lambda*\vec{n_{E}} [/mm] ist eben genau der "Abstandsvektor" Gerade-Ebene, also [mm] \overrightarrow{PF} [/mm]

Und der Vektor [mm] \overrightarrow{P'F} [/mm] muss halt genau der Gegenvektor zu [mm] \overrightarrow{PF} [/mm] sein, also müsstest du, um p' zu bekommen, folgendes berechnen.

[mm] \vec{p}+\overrightarrow{PF}+\overrightarrow{FP'} [/mm]
[mm] =\vec{p}+\overrightarrow{PF}-\overrightarrow{P'F} [/mm]
[mm] =\vec{p}+\overrightarrow{PF}+\overrightarrow{PF} [/mm]
[mm] =\vec{p}+2*\overrightarrow{PF} [/mm]
[mm] =\vec{p}+2*(\lambda*\vec{n_{e}}) [/mm]

Marius

Bezug
        
Bezug
Vektor spiegeln / drehen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:23 Fr 07.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]