matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektor senkrecht auf zwei V.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Vektor senkrecht auf zwei V.
Vektor senkrecht auf zwei V. < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor senkrecht auf zwei V.: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:09 Di 11.07.2006
Autor: Auric

Aufgabe
Gegeben sind zwei Vektoren a (2,1,-3) b(1,-2,1). gesucht wid ein Vektor c der Senkrecht auf beiden steht und den Betrag 5 hat.

Ich hab mal angefanden das Kreuzprodukt von a und b zu machne, weil das ja der Vektor wäre der Senkrecht auf beiden steht.
Nur wei bekomme ich das jetzt hin das der Vektor c den betrag von 5 hat?

Die Gleichung dafür wäre ja:

5 =  [mm] \wurzel{ c_{1}^{2}+ c_{2}^{2}+ c_{3}^{2}} [/mm]

Weis einer weiter?


        
Bezug
Vektor senkrecht auf zwei V.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 Di 11.07.2006
Autor: ardik

Hallo Auric,

welchen Betrag hat der Vektor, den Du herausbekommen hast?
Wie kannst Du den verändern, so dass ein dazu kollinearer Vektor mit Betrag 5 rauskommt?

Alles klar? ;-)

Schöne Grüße,
ardik

Bezug
                
Bezug
Vektor senkrecht auf zwei V.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Di 11.07.2006
Autor: Auric

Also der Vektor ist  (-5,-5,-5) bzw wäre ja auch (5,5,5) möglich.

Wenn ich das Ausrechne bekomm ich 5 [mm] \wurzel{3}, [/mm]

muss ich dann schreiben

|c|= 5 [mm] \wurzel{3}, [/mm] dann durch  [mm] \wurzel{3} [/mm]
[mm] \bruch{|c|}{\wurzel{3}} [/mm] = 5 ?

Also das dann c = [mm] (\bruch{5}{\wurzel{3}},\bruch{|c|}{\wurzel{3}},\bruch{|c|}{\wurzel{3}})? [/mm]

Wenn ichs ausrechne bekomm ich 5 raus. Aber ich glaub mein Lösungsweg ist so ein bißchen aus der Luft gegriffen?

Ich hab gleich noch ne Frage, sry in Vektorrechnung bin ich net gerade gut,

Wenn ich diese 3 Vektoren habe:

a (1, [mm] \lambda,4), [/mm] b (-2,4.-1), c (-3,5,1)
wie muss ich dann   [mm] \lambda [/mm] bestimmen das alle 3 in einer einer Ebene liegen?






Bezug
                        
Bezug
Vektor senkrecht auf zwei V.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Di 11.07.2006
Autor: ardik


>  
> Also das dann c =
> [mm](\bruch{5}{\wurzel{3}},\bruch{5}{\wurzel{3}},\bruch{5}{\wurzel{3}})?[/mm]

Die |c| in den Brüchen (in Deinem Original) waren sicherlich cut'n'paste-Fehler... ;-)

> Wenn ichs ausrechne bekomm ich 5 raus. Aber ich glaub mein
> Lösungsweg ist so ein bißchen aus der Luft gegriffen?

Nö. Völlig ok. Du hast den Vektor duch einen geeigneten Vorfaktor passend verkürzt.
Beispielsweise teilt man für die Hessesche Normaleform einen beliebigen erhaltenen Vektor durch seinen eigenen Betrag, um einen Normalenvektor der Länge 1 zu bekommen.

> Ich hab gleich noch ne Frage,

Für 'ne ganz neue Frage ist übrigens meist auch ein neuer Diskussionsfaden sinnvoll

> Wenn ich diese 3 Vektoren habe:
>  
> a (1, [mm]\lambda,4),[/mm] b (-2,4.-1), c (-3,5,1)
>  wie muss ich dann   [mm]\lambda[/mm] bestimmen das alle 3 in einer
> einer Ebene liegen?

Anders ausgedrückt: Dies Vektoren müssen komplanar sein oder eben: Linear abhängig.
Meinst Du das? Oder sollen das drei Punkte sein, die in einer Ebene liegen sollen?

Ich nehm's mal wörtlich und gehe von drei Vektoren aus.
Also muss gelten:

[mm] $x_1*\vektor{1 \\ \lambda \\ 4}+x_2*\vektor{-2\\4\\-1}+ x_3*\vektor{-3\\5\\1}=\vektor{0\\0\\0}$ [/mm]
ohne dass alle x = 0 sind.
Also Gleichungssystem aufstellen und dann passendes [mm] \lambda [/mm] suchen.

Aber ich zweifle etwas, dass Du das meintest...?

Schöne Grüße,
ardik

Bezug
                                
Bezug
Vektor senkrecht auf zwei V.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 Di 11.07.2006
Autor: Auric

Mhh, ne ich glaube nicht das es das ist, die Aufgabe lautet einfach:

[mm] \lambda [/mm] so zu bestimmen das alle drei Vektoren a,b und c in einer Ebene liegen.

Wenn ich das was du hingeschrieben hast aufstelle. Dann würde ich doch ein LGS erhalten.  [mm] \lambda [/mm] müsste ich dann für einen Definitiopnsbereich bestimmen. In der Lösung kommt aber genau 3.4 für  [mm] \lambda [/mm] raus.

Ich hab mir gedacht, das ich einfach sagen kann, dass das Kreuzprodukt von z.b a x b ja einen Normalvektor der Ebene ergibt. a x c ebenfalls. Die beiden müssten doch dann Parallel sein, würde einem das nciht irgendwie weiterhelfen?

Bezug
                                        
Bezug
Vektor senkrecht auf zwei V.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Di 11.07.2006
Autor: ardik


> Ich hab mir gedacht, das ich einfach sagen kann, dass das
> Kreuzprodukt von z.b a x b ja einen Normalvektor der Ebene
> ergibt. a x c ebenfalls. Die beiden müssten doch dann
> Parallel sein, würde einem das nciht irgendwie
> weiterhelfen?

Ja klar, das müsste auch gehen. (Ich hatte eben an die / eine Standardmethode gedacht...)

Wenn ich keinen Denkfehler mache, müsstest Du mit $a  [mm] \times [/mm] b = a  [mm] \times [/mm] c$ eigentlich Erfolg haben.
Da kommt ja dann eine simple Gleichung mit [mm] $\lambda$ [/mm] raus...

Schöne Grüße,
ardik

Bezug
                                                
Bezug
Vektor senkrecht auf zwei V.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:03 Di 11.07.2006
Autor: Auric

Mh, also genau das hab ich auch schon aufgestellt und ausgerechnet, aber ich komm einfach nicht auf das richtige ergebnis. Ich komm immer auf 3 und nicht auf 3,4.
Der Ansatz müsste doch richtig sein.
Es gilt doch, wenn zwei Vektoren Parallel sind, sind sie gleich.


Bezug
                                                        
Bezug
Vektor senkrecht auf zwei V.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 Di 11.07.2006
Autor: ardik


>  Es gilt doch, wenn zwei Vektoren Parallel sind, sind sie gleich.

Nein.
Wenn sie parallel sind und gleich lang sind und in die selbe Richtung zeigen, dann sind sie gleich.

Ich bekomme übrigens -3,4 raus (also negativ), allerdings auf anderem Wege, ähnlich meinem ersten Vorschlag, der unötig kompliziert war:

[mm] $\vektor{1 \\ \lambda \\ 4} [/mm] = [mm] x_1*\vektor{-2\\4\\-1}+ x_2*\vektor{-3\\5\\1}$ [/mm]

Aus der ersten und letzten Zeile ergibt sich ein harmloses LGS mit zwei Unbekannten. Deren Ergebnisse dann in die zweite Zeile eingesetzt ergibt [mm] \lambda. [/mm]


Bezug
                                                                
Bezug
Vektor senkrecht auf zwei V.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Di 11.07.2006
Autor: Auric

Aha,
und in welchen bezug steht dies Gleichung dann zur Ebene?
Gibt es da irgendeine Allgemeine Form?
Sieht etwas wie die Normalform einer Ebengleichung aus.

Bezug
                                                                        
Bezug
Vektor senkrecht auf zwei V.: Hinweise
Status: (Antwort) fertig Status 
Datum: 11:57 Do 13.07.2006
Autor: Roadrunner

Hallo Auric!


ardik's Gleichung ist schlicht und ergreifend eine andere Form für den Ansatz der linearen Abhängigkeit.


> Gibt es da irgendeine Allgemeine Form?

Linear abhängig bedeutet ja, dass ich einen der Vektoren durch Skalarkombination der anderen beiden darstellen kann. Das hat ardik hier so angesetzt.


> Sieht etwas wie die Normalform einer Ebengleichung aus.

Naja, diese sieht dann doch etwas anders aus mit:

$E \ : \ [mm] \vec{n}*\left[ \ \vec{x}-\vec{p} \ \right] [/mm] \ = \ 0$   bzw.   $E \ : \ [mm] \vec{n}*\vec{x} [/mm] \ = \ [mm] \vec{n}*\vec{p} [/mm] \ = \ d$


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]