matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelVektor mit bestimmtem Winkel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Längen, Abstände, Winkel" - Vektor mit bestimmtem Winkel
Vektor mit bestimmtem Winkel < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor mit bestimmtem Winkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:21 So 15.12.2013
Autor: homomophismus

Aufgabe
Gib einen Vektor an der mit AB = (3/-9) einen 40°-Winkel bei A = (-6/3) einschließt.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wie gehe ich da ran? Komme mit der Formel cos a = (u*v) : "Betrag u"*"Betrag v" nicht weiter...:-(

        
Bezug
Vektor mit bestimmtem Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 So 15.12.2013
Autor: Diophant

Hallo,

> Gib einen Vektor an der mit AB = (3/-9) einen 40°-Winkel
> bei A = (-6/3) einschließt.

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

> Wie gehe ich da ran? Komme mit der Formel cos a = (u*v) :
> "Betrag u"*"Betrag v" nicht weiter...:-(

Znächsteinmal ist die Aufgabe missverständlich: sollst du einen Vektor angeben, dann wäre die Angabe des Punktes A unnötig. Oder sollst du eine Geradengleichung aufstellen?

Der Ansatz mit der Formel

[mm] cos(\alpha)=\bruch{\vec{u}*\vec{v}}{|\vec{u}|*|\vec{v}|} [/mm]

ist schon der richtige. Einen der Vektoren hast du, den Kosinus von 40° kannst du näherungsweise berechnen, und warum du nicht weiterkommst hat vermutlich die Ursache, dass dir in diese Gleichung zwei Unbekannte in Form der Vektorkoordinaten hineingeraten?

Dem kann man abhelfen, indem man bspw.

[mm] \vec{v}=(1,y)^T [/mm]

ansetzt.

Gruß, Diophant

Bezug
                
Bezug
Vektor mit bestimmtem Winkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 So 15.12.2013
Autor: homomophismus

ja im endeffekt soll ich dann eine geradengleichung aufstellen zum Schluss, stimmt.

d.h. der Ansatz ist richtig und ich wähle mir einfach eine der beiden Koordinaten und bekomme so eine Gleichung für EINE unbekannte nicht für zwei (was genau mein problem war)..?

Bezug
                        
Bezug
Vektor mit bestimmtem Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 So 15.12.2013
Autor: Diophant

Hallo,

> ja im endeffekt soll ich dann eine geradengleichung
> aufstellen zum Schluss, stimmt.

>

> d.h. der Ansatz ist richtig und ich wähle mir einfach eine
> der beiden Koordinaten und bekomme so eine Gleichung für
> EINE unbekannte nicht für zwei (was genau mein problem
> war)..?

Ja, genau so war das gemeint. Jetzt musst du es nur noch tun! :-)

Es läuft allerdings auf eine quadratische Gleichung hinaus, d.h., da muss dann mit Bedacht auch noch die 'richtige' der beiden Lösungen ausgewählt werden. I.a. betrachtet man Drehwinkel, dioe gegen den Uhrzeigersinn gehen, als positiv und wenn in der Aufgaben sonst nichts weietr steht, musst du eben diejenige Lösung wählen, die dies sicherstellt.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]