matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesVektor in Komponenten zerlegen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Vektor in Komponenten zerlegen
Vektor in Komponenten zerlegen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor in Komponenten zerlegen: Lösungshinweis gesucht
Status: (Frage) beantwortet Status 
Datum: 14:02 So 06.01.2008
Autor: xAmp

Aufgabe
Der Vektor s=i+4j-2k soll in Richtung der Vektoren a) a=-3i+j-2k, b=2i+3j-k, c=i-2j-3k zerlegt werden.

Also Lösung kommt für a) heraus:
D [mm] \not= [/mm] 0, d.h. a,b,c linear unabhängig.
Ansatz: [mm] s=\lambda a+\mu b+\mu [/mm] c, [mm] s=\bruch{1}{52}(23a+61b-c) [/mm]

Wie muss ich bei dieser Aufgabe vorgehen? Bräuchte einen Lösungsansatz :-/ Für Hilfe bin ich sehr dankbar!

Gruß xAmp

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektor in Komponenten zerlegen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 So 06.01.2008
Autor: angela.h.b.


> Der Vektor s=i+4j-2k soll in Richtung der Vektoren a)
> a=-3i+j-2k, b=2i+3j-k, c=i-2j-3k zerlegt werden.
>  Also Lösung kommt für a) heraus:
>  D [mm]\not=[/mm] 0, d.h. a,b,c linear unabhängig.
>  Ansatz: [mm]s=\lambda a+\mu b+\mu[/mm] c,
> [mm]s=\bruch{1}{52}(23a+61b-c)[/mm]
>  
> Wie muss ich bei dieser Aufgabe vorgehen? Bräuchte einen
> Lösungsansatz :-/ Für Hilfe bin ich sehr dankbar!
>  
> Gruß xAmp

Hallo,

Du vergißt zu sagen, in welchem Vektorraum über welchem Körper Du Dich bewegst, und was i,j und k sein soll.

Ich nehme mal an, daß i,j,k linear unabhängige Vektoren  (Quaternionen???) sind.

> [mm] s=\lambda a+\mu b+\mu [/mm] c

Du schaust also nach, wie Du s als Linearkombi v. a,b,c schreiben kannst, hierfür mußt Du [mm] \lambda, \mu \nu [/mm] ermitteln.

Setze in obige Gleichung Deine Vektoren s,a,b,c ein, und sortiere wie folgt:

0=(...)*i+(...)*j+(...)*k.

Aus der linearen Unabhängigkeit der  i,j,k ergibt sich, daß die Klammern jeweils=0 sein müssen.

Damit hast Du ein LGS mit den Variablen  [mm] \lambda, \mu, \nu [/mm] welches Du nun löst.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]