matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenVektor durch Zahl
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Vektor durch Zahl
Vektor durch Zahl < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor durch Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:29 Mi 25.04.2018
Autor: rubi

Hallo zusammen,

ein Einheitsvektor berechnet sich mit der Formel [mm] \overrightarrow{a_0}=\bruch{1}{|\overrightarrow{a}|} [/mm] * [mm] \overrightarrow{a}. [/mm]

Wäre es auch mathematisch erlaubt die Formel so aufzuschreiben ?
[mm] \overrightarrow{a_0}=\bruch{\overrightarrow{a}}{|\overrightarrow{a}|} [/mm]  ?

Ich frage deshalb nach, weil es gemäß der Vektorraumaxiome zwar erlaubt ist, eine Zahl * Vektor zu berechnen, aber nicht Vektor * Zahl.

Daher stelle ich mir die Frage, ob die Division eines Vektors durch eine Zahl durch die Vektorraumaxiome wirklich abgedeckt ist oder ob es sich um eine
"schulmathematische Vereinfachung" handelt.

Vielen Dank für Eure Antworten.

Grüße
Rubi

Ich habe diese Frage in keinem anderen Forum gestellt.



        
Bezug
Vektor durch Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 00:49 Mi 25.04.2018
Autor: ChopSuey

Hallo,

> Hallo zusammen,
>
> ein Einheitsvektor berechnet sich mit der Formel
> [mm]\overrightarrow{a_0}=\bruch{1}{|\overrightarrow{a}|}[/mm] *
> [mm]\overrightarrow{a}.[/mm]
>  
> Wäre es auch mathematisch erlaubt die Formel so
> aufzuschreiben ?
>  
> [mm]\overrightarrow{a_0}=\bruch{\overrightarrow{a}}{|\overrightarrow{a}|}[/mm]
>  ?

Ja. Da ist auch die übliche Bezeichnung einer Normierung.

>  
> Ich frage deshalb nach, weil es gemäß der
> Vektorraumaxiome zwar erlaubt ist, eine Zahl * Vektor zu
> berechnen, aber nicht Vektor * Zahl.
>
> Daher stelle ich mir die Frage, ob die Division eines
> Vektors durch eine Zahl durch die Vektorraumaxiome wirklich
> abgedeckt ist oder ob es sich um eine
> "schulmathematische Vereinfachung" handelt.
>
> Vielen Dank für Eure Antworten.
>
> Grüße
>  Rubi
>  
> Ich habe diese Frage in keinem anderen Forum gestellt.
>  
>  

LG,
ChopSuey


Bezug
        
Bezug
Vektor durch Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 07:29 Mi 25.04.2018
Autor: tobit09

Hallo rubi!


> ein Einheitsvektor berechnet sich mit der Formel
> [mm]\overrightarrow{a_0}=\bruch{1}{|\overrightarrow{a}|}[/mm] *
> [mm]\overrightarrow{a}.[/mm]
>  
> Wäre es auch mathematisch erlaubt die Formel so
> aufzuschreiben ?
>  
> [mm]\overrightarrow{a_0}=\bruch{\overrightarrow{a}}{|\overrightarrow{a}|}[/mm]
>  ?

Ich würde sagen: Das ist genau dann erlaubt, wenn vorher geeignet definiert/erklärt wurde, was mit "Vektor durch Skalar" gemeint sein soll.


> Daher stelle ich mir die Frage, ob die Division eines
> Vektors durch eine Zahl durch die Vektorraumaxiome wirklich
> abgedeckt ist

Nein, die Vektorraumaxiome selbst treffen sicherlich keine Definition einer Schreibweise "Vektor durch Skalar", aber natürlich wäre es kein Problem, eine solche abkürzende Schreibweise ergänzend zu definieren.


(Ich selbst kann mich nicht erinnern, eine solche Schreibweise schon einmal gesehen zu haben, aber das muss ja nichts heißen. Im Übrigen halte ich das aber auch für irrelevant für die Frage, ob die Schreibweise "erlaubt" ist. Entscheidend ist für mich, was im jeweiligen Kontext definiert wurde.)


Viele Grüße
Tobias

Bezug
        
Bezug
Vektor durch Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 07:42 Mi 25.04.2018
Autor: fred97

Für einen Vektor [mm] \vec{a} [/mm] und einen Skalar $ [mm] \alpha \ne [/mm] 0$ definiert man

[mm] \frac{\vec{a}}{\alpha}:=\alpha^{-1}\vec{a}. [/mm]

[mm] \alpha^{-1}: [/mm]   multiplikatives Inverses von [mm] \alpha. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]