matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenVektor bestimmen.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - Vektor bestimmen.
Vektor bestimmen. < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor bestimmen.: mit Hilfe von 3 Angaben
Status: (Frage) beantwortet Status 
Datum: 16:31 Fr 07.03.2008
Autor: brichun

Aufgabe
Gegeben sind die Vektoren a=(2,1,-3) b=(1,-2,1).
Man berechne einen Vektor c mit [mm]\left| c \right|[/mm] = 5 der senkrecht auf a und b steht.

ich hab das so versucht

1) c=(x,y,z) --> 3unbekannte also brauch ich 3 Gleichungen.

2)  Aufstellen der Gleichungen:

     A: a * c =0 -->  2x+y-3z=0
     B: b * c =0 -->  x-2y+ z =0
     C:  [mm]\left| c \right|[/mm] = 5 -->

[mm]\wurzel{x^2+y^2+z^2}[/mm]=5


jetzt hab ich die Gleichung C quadriert um die Wurzel zu eliminieren.

[mm]x^2+y^2+z^2[/mm]=25

wie geht es jetzt weiter wenn ich die Gleichung A in B einsetze und danach in c hab ich immer noch 1 unbekannte zu viel. Wenn die Gleichung C nicht quadriert wäre könnte man das Ganze mit dem LGS lösen.

Danke für euren support


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektor bestimmen.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Fr 07.03.2008
Autor: Zwerglein

Hi, brichun,

> Gegeben sind die Vektoren a=(2,1,-3) b=(1,-2,1).
>  Man berechne einen Vektor c mit [mm]\left| c \right|[/mm] = 5 der
> senkrecht auf a und b steht.

>  ich hab das so versucht
>
> 1) c=(x,y,z) --> 3unbekannte also brauch ich 3
> Gleichungen.
>  
> 2)  Aufstellen der Gleichungen:
>  
> A: a * c =0 -->  2x+y-3z=0

>       B: b * c =0 -->  x-2y+ z =0
>       C:  [mm]\left| c \right|[/mm] = 5 -->

>
> [mm]\wurzel{x^2+y^2+z^2}[/mm]=5
>  
>
> jetzt hab ich die Gleichung C quadriert um die Wurzel zu
> eliminieren.
>  
> [mm]x^2+y^2+z^2[/mm]=25
>  
> wie geht es jetzt weiter wenn ich die Gleichung A in B
> einsetze und danach in c hab ich immer noch 1 unbekannte zu
> viel.

Also: Ich würde die Länge des gesuchten Vektors erst ganz am Schluss in die Rechnung einbeziehen!
Will heißen: Rechne erst mal IRGENDEINEN Vektor aus, der auf den beiden gegebenen senkrecht steht und bringe ihn dann auf die gewünschte Länge!
Nimm' also nur die beiden Gleichungen
2x+y-3z=0 und x-2y+ z =0,
setze z.B. x=1 und berechne dann y und z.

Ich nehm's vorweg: Der Vektor, den Du so rauskriegst, hat die Länge [mm] \wurzel{3}. [/mm]
Du musst ihn nun - um auf die gewünschte Länge zu kommen - durch [mm] \wurzel{3} [/mm] dividieren und dann mit 5 multiplizieren.

mfG!
Zwerglein

Bezug
                
Bezug
Vektor bestimmen.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:46 Fr 07.03.2008
Autor: brichun

Danke es hat geklappt ;)

Bezug
        
Bezug
Vektor bestimmen.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Fr 07.03.2008
Autor: Rutzel

Darf ich Dir einen alternativen Lösungsvorschlag anbieten?

Berechne das Vektorprodukt der beiden Vektoren:

[mm] \vec{a} \times \vec{b}= \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}:=\vec{c} [/mm]

:= bedeutet, wir definieren den neuen Vektor als Vektor c.

c steht senkrecht auf der von [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] augespannten Ebene.

Nun normierst du c, d.h. du bringt ihn auf Länge 1, indem du ihn durch seine eigene Länge teilst:
[mm] \bruch{\vec{c}}{|\vec{c}|} [/mm]

Jetzt hast du einen Vektor der länge 1 mit gewünschter Richtung vorliegen, diesen musste du nur noch mit 5 multiplizieren.

Gruß,
Rutzel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]