matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenVektor, Kreise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - Vektor, Kreise
Vektor, Kreise < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor, Kreise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Mo 09.03.2009
Autor: Dinker

Hallo

Ich komme hier leider überhaupt nicht klar

[Dateianhang nicht öffentlich]

Ich schreib es mal in eine Kreisgleichung um:
[mm] k_{1}: [/mm] (2x + [mm] 0)^{2} [/mm] + (2y [mm] -50)^{2} [/mm] = 1975
[mm] k_{2}: [/mm] (x - [mm] 12)^{2} [/mm] + (y + [mm] 0)^{2} [/mm] = 100


Nun habe ich einmal die Geraden Gleichung, die durch die Mittelpunkte der beiden Kreise geht berechnet...
[mm] M_{1} [/mm] = (0/50)
[mm] M_{2} [/mm] = (12/0)

[mm] M_{1}' [/mm] = (0/k)

Die Gerade von [mm] M_{2} [/mm] zu [mm] M_{1}' [/mm] beträgt [mm] \wurzel{1975} [/mm] + 10 = [mm] \sim54.44 [/mm]
[mm] \wurzel{12^{2} + k^{2}} [/mm]  = [mm] \sim54.44 [/mm]
144 +  [mm] k^{2} [/mm] = [mm] \sim [/mm] 2963.82

k = [mm] \sim [/mm] 53.1

Nach dieser Rechnung wären es 3.1 Verschiebung

Vielen Dank
Gruss Dinker











Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Vektor, Kreise: keine Kreisgleichung
Status: (Antwort) fertig Status 
Datum: 18:19 Mo 09.03.2009
Autor: Loddar

Hallo Dinker!


Deine 1. vermeintliche Kreisgleichung ist keine Kreisgleichung. Du musst hier zunächst die Gleichung durch 4 dividieren, da in der Kreisgleichung das $x_$ bzw. das $y_$ alleine (also Koeffizient = 1) steht.


Gruß
Loddar


Bezug
                
Bezug
Vektor, Kreise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Mo 09.03.2009
Autor: Dinker

Hallo Loddar

Also:
[mm] x^{2} [/mm] + [mm] y^{2} [/mm]  - 25y = -105
(x + [mm] 0)^{2} [/mm] + (y - 12.5) = 51.25

Meinst du so?

Gruss Dinker


Bezug
                        
Bezug
Vektor, Kreise: verrechnet
Status: (Antwort) fertig Status 
Datum: 18:41 Mo 09.03.2009
Autor: Loddar

Hallo Dinker!


Da hast Du Dich vertan ...


> [mm]x^{2}[/mm] + [mm]y^{2}[/mm]  - 25y = -105

Hier erhalte ich: [mm] $x^2+y^2-25*y [/mm] \ = \ [mm] -\red{131.25}$ [/mm]

> (x + [mm]0)^{2}[/mm] + (y - 12.5) = 51.25

Und aus meinem Ergebnis dann:
[mm] $$(x-0)^2+(y-12.5)^2 [/mm] \ = \ 25$$

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]