matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenVektor Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - Vektor Ebene
Vektor Ebene < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor Ebene: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:32 So 18.01.2015
Autor: Alex1592

Aufgabe
Bestimmen sie den Abstand  d(P2,E), d(P1,E) und bestimmen Sie anschließend die Gleichung der Ebenen E in 3-Punkt-Form. Bestimmen Sie dazu zunächst
drei Punkte A, B und C die in E liegen.

E: [mm] x*\pmat{ 2 \\ -1 \\ 4 }=6 [/mm]

Punkt 1 (5/-1/-2)   Punkt 2 (1/1/2)

Hallo,
ich bräuchte dringend Hilfe bei meiner Aufgabe. Mein Problem liegt bei der Bestimmung der Punkte A,B,C und E in 3 Punktform. Die Abstände habe ich augerechnet das Ergebnis stimmt auch. d(P2,E) =  [mm] \wurzel{3/7} [/mm] und d(P1,E)=  [mm] \wurzel{3/7}. [/mm]
Wäre super wenn jemand mir helfen könnte.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Vektor Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 So 18.01.2015
Autor: angela.h.b.


> Bestimmen sie den Abstand  d(P2,E), d(P1,E) und bestimmen
> Sie anschließend die Gleichung der Ebenen E in
> 3-Punkt-Form. Bestimmen Sie dazu zunächst
>  drei Punkte A, B und C die in E liegen.
>
> E: [mm]x*\pmat{ 2 \\ -1 \\ 4 }=6[/mm]
>  
> Punkt 1 (5/-1/-2)   Punkt 2 (1/1/2)
>  Hallo,
>  ich bräuchte dringend Hilfe bei meiner Aufgabe. Mein
> Problem liegt bei der Bestimmung der Punkte A,B,C

Hallo,

bedenke:

Alle Punkte [mm] P(x_1,x_2,x_3), [/mm] die die Gleichung
E: [mm]x*\pmat{ 2 \\ -1 \\ 4 }=6[/mm]
lösen,
liegen in der Ebene.

Der Punkt [mm] P_1(5|-1|4) [/mm] liegt nicht in der Ebene, denn es ist

[mm] \vektor{5\\-1\\4}*\pmat{ 2 \\ -1 \\ 4 }=27 [/mm]  und nicht =6.

Aber der Punkt A(3|0|0) liegt in E, denn es ist [mm] \vektor{3\\0\\0}*\pmat{ 2 \\ -1 \\ 4 }=6. [/mm]

Suche nun zwei weitere Punkte. Achte darauf, daß sie nicht auf einer Geraden liegen, damit Du danach die Ebenengleichung in Parameterform aufstellen kannst.

LG Angela



> und E in
> 3 Punktform. Die Abstände habe ich augerechnet das
> Ergebnis stimmt auch. d(P2,E) =  [mm]\wurzel{3/7}[/mm] und d(P1,E)=  
> [mm]\wurzel{3/7}.[/mm]
>  Wäre super wenn jemand mir helfen könnte.
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Bezug
                
Bezug
Vektor Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 So 18.01.2015
Autor: Alex1592

wie bestimme ich die nächsten Punkte denn , einfach irgendwas einsetzen und schauen ob 6 rauskommt, oder ??

Bezug
                        
Bezug
Vektor Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 So 18.01.2015
Autor: abakus


> wie bestimme ich die nächsten Punkte denn , einfach
> irgendwas einsetzen und schauen ob 6 rauskommt, oder ??

Das wäre Blindflig mit Hoffnung auf Zufallstreffer. Setze für zwei der drei Koordinaten irgenwas (leicht zu berechnendes wie 0 oder 1) ein und berechne dann die dritte Koordinate so, dass 6 rauskommen MUSS.

Bezug
                
Bezug
Vektor Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:28 So 18.01.2015
Autor: Alex1592

Habe die Aufgabe gelöst. Danke angela.h.b und abakus für eure Antworten. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]