matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenVariationsansatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Partielle Differentialgleichungen" - Variationsansatz
Variationsansatz < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Variationsansatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:30 Fr 15.08.2008
Autor: FrankM

Hallo,

mein Problem ist, dass ich gar nicht genau weiß, ob das Thema richtig gewählt ist. Ich hatte vor einiger Zeit mal einen Ansatz dafür gesehen, wie man, wenn man die Lösung für
[mm] \Delta [/mm] u = [mm] \lambda [/mm] u in [mm] \Omega [/mm]
[mm] u|_{\partial \Omega}=0 [/mm]
kennt, die Lösung für ein leicht gestörtes Gebiet bestimmen kann. Die Störung war in der Form [mm] \overrightarrow{n_s}*h*a(\omega) [/mm] gegeben, wobei [mm] \overrightarrow{n_s} [/mm] der Normalenvektor, h ein kleiner Parameter und a eine Funktion auf dem Rand von [mm] \Omega [/mm] sind. Die Idee war in den Gleichungen oben u und [mm] \lambda [/mm] als Funktionen von h zu interpretieren und dann alles nach h abzuleiten, daraus konnte dann irgendwie eine Gleichung für die Variation von [mm] \lambda [/mm] in Abhängigkeit von h bestimmt werden, ungefähr in der Form
[mm] \bruch{d}{d h}\lambda=h \integral_{\partial \Omega}{|\nabla a(\omega)|^2 d\omega}. [/mm]

Leider finde ich dieses Verfahren nicht mehr wieder, daher meine Frage hat jemand eine Idee für ein Schlagwort nach dem ich suchen kann, bzw. weiß jemand wo man es nachlesen kann?

Vielen Dank
Frank

        
Bezug
Variationsansatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:42 Di 19.08.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Variationsansatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:39 Mi 27.08.2008
Autor: FrankM

Hallo,

bin immer noch für Tipps oder Hinweise dankbar.

Grüße
Frank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]