matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenVariation einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Variation einer Funktion
Variation einer Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Variation einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 So 24.07.2011
Autor: Sachsen-Junge

Hallo liebes Team,

ich habe ein Verständnisproblem bei folgenden Beweis.

Der Satz lautet: Es ist f von beschränkter Variation auf [a,b] genau dann, wenn f als Differenz zweier monoton wachsender Funktionen geschrieben werden kann.

Beiweis.

[mm] "\Rightarrow" [/mm]

Da f von beschränkter Variation auf [a,b] ist, dann ist f auch von beschränkter Variation auf [a,x] mit [mm] x\in [/mm] [a,b]. Man setzt

g(x)= [mm] V_{a}^{x}(f) [/mm]
[mm] h(x)=V_{a}^{x}(f)-f(x). [/mm]

Im Skript steht, das es offentsichtlich ist, dass g mononton wachsend ist. Woran sehe ich das, oder besser, welches Argument gilt hier?


Meine Ausführung:

g(x)= [mm] V_{a}^{x}(f)\ge sup\{\sum_{k=1}^{i}|f(x_{k})-f(x_{k-1})|:a=x_1<...
Das ist leider nicht kluges, weil es einfach die Definition der Variation ist.....:-(

Ich bin für Tipps sehr dankbar.

Liebe Grüße

Junge



        
Bezug
Variation einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 So 24.07.2011
Autor: fred97

Nimm x,y [mm] \in [/mm] [a,b] mit y<x und zeige: $ [mm] V_{a}^{y}(f) \le V_{a}^{x}(f) [/mm] $

Wenn Z eine Zerlegung von [a,y] ist, so ist [mm] Z_0:=Z \cup [/mm]  { x } eine Zerlegung von [a,x]

FRED


Bezug
                
Bezug
Variation einer Funktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:36 So 24.07.2011
Autor: Sachsen-Junge

Hallo Fred,

es gelten deine Bedingungen.

Es sei i<j.

[mm] V_{a}^{y}= sup\{\sum_{k=1}^{i}|f(x_{k})-f(x_{k-1})|:a=x_1<...
Ich glaube, ich habe es Verstanden. Durch den Betrag der Differenz der Funktionswerte, wird meine Funktion g immer größer, wenn ich das Intervall der Variation vergrößer.

LG

Junge

Bezug
                        
Bezug
Variation einer Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 26.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]