matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenVariation der Konstanten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Variation der Konstanten
Variation der Konstanten < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Variation der Konstanten: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:23 Mi 06.07.2011
Autor: likenobody

Aufgabe
Berechnen Sie nach der Methode "variation der Konstanten" die vollständige Lösung der DGL: y`` + 3y`+ 2y = sin [mm] e^t [/mm]

Die Homegene LSG ergibt sich zu:

[mm] y_H=C_1*e^-^t+C_2*e^-^2^t [/mm]

durch Variation der Konstanten wurden die Werte [mm] C_1 [/mm] und [mm] C_2 [/mm] der partikulären Lösung ermittelt.

[mm] c_1= cos(e^t)+\bruch{1}{e^t}*sin(e^t) [/mm]
und
[mm] c_2= (\bruch{2}{e^t}-e^t)cos(e^t)+2sin(e^t) [/mm]

dies führt dann zu der lösung der DGL mit :

[mm] y_{allg}=C_1*e^-^t+C_2*e^-^2^t [/mm] + [mm] (cos(e^t)+\bruch{1}{e^t}*sin(e^t))*e^-^t+((\bruch{2}{e^t}-e^t)cos(e^t)+2sin(e^t))*e^-^2^t [/mm]

nun habe ich bei der überprüfung festgestellt, das es nicht der ausgangsgleichung entspricht. Finde jedoch meinen Fehler nicht.

kann wenn ich näher lokalisieren kann wo dieser ist auch gerne die entsprechende stelle hier posten.

Vielen dank

        
Bezug
Variation der Konstanten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Mi 06.07.2011
Autor: schachuzipus

Hallo likenobody,

> Berechnen Sie nach der Methode "variation der Konstanten"
> die vollständige Lösung der DGL: y'' + 3y'+ 2y = sin [mm]e^t[/mm]
> Die Homegene LSG ergibt sich zu:
>
> [mm]y_H=C_1*e^-^t+C_2*e^-^2^t[/mm] [ok]
>
> durch Variation der Konstanten wurden die Werte [mm]C_1[/mm] und [mm]C_2[/mm]
> der partikulären Lösung ermittelt.
>
> [mm]c_1= cos(e^t)+\bruch{1}{e^t}*sin(e^t)[/mm]
> und
> [mm]c_2= (\bruch{2}{e^t}-e^t)cos(e^t)+2sin(e^t)[/mm]
>
> dies führt dann zu der lösung der DGL mit :
>
> [mm]y_{allg}=C_1*e^-^t+C_2*e^-^2^t[/mm] + [mm](cos(e^t)+\bruch{1}{e^t}*sin(e^t))*e^-^t+((\bruch{2}{e^t}-e^t)cos(e^t)+2sin(e^t))*e^-^2^t[/mm]
>
> nun habe ich bei der überprüfung festgestellt, das es
> nicht der ausgangsgleichung entspricht. Finde jedoch meinen
> Fehler nicht.

Dann solltest du mal die Variation der Konstanten konkret hier vorrechnen.

Wie sollen wir einen evtl. Fehler in deiner Rechnung lokalisieren, wenn du uns selbige vorenthältst ???

Ich komme (ohne Gewähr) auf die Bedingung [mm](C_1''(t)+C_1'(t))\cdot{}e^{-t} \ + \ (C_2''(t)-C_2'(t))\cdot{}e^{-2t} \ = \ \sin\left(e^t\right)[/mm]


Oder ist rechterhand etwas anderes gemeint?

Ich meine, dass es hier sonst mit dem Integrieren schwierig wird ...


>
> kann wenn ich näher lokalisieren kann wo dieser ist auch
> gerne die entsprechende stelle hier posten.
>
> Vielen dank

Gruß

schachuzipus


Bezug
        
Bezug
Variation der Konstanten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:28 Fr 08.07.2011
Autor: likenobody

So ich habe nun meinen Fehler gefunden. War ein fehler bei der Integralsubstitution.

Das richtige Ergebnis müsste dann wie folgt lauten:

[mm] y=c_1*e^-^2^t +c_2*e^-^t [/mm] + [mm] (2*e^-^t+e^-3^t)*sin(e^t)+(1-3e^-^2^t)* cos(e^t) [/mm]

kann mir des jemand bestätigen?

Danke

Bezug
                
Bezug
Variation der Konstanten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Fr 08.07.2011
Autor: schachuzipus

Hallo,


> So ich habe nun meinen Fehler gefunden. War ein fehler bei
> der Integralsubstitution.
>  
> Das richtige Ergebnis müsste dann wie folgt lauten:
>  
> [mm]y=c_1*e^-^2^t +c_2*e^-^t[/mm] +  [mm](2*e^-^t+e^-3^t)*sin(e^t)+(1-3e^-^2^t)* cos(e^t)[/mm]
>  
> kann mir des jemand bestätigen?

Puh, das ist eine Heidenarbeit, ich habe das mal per Hand probiert zu überprüfen, aber das scheint nicht zu passen, es hebt sich nicht alles weg, wie es sollte (modulo Rechenfehler)

Aber bei Wolfram kann man es nachrechnen lassen:

http://www.wolframalpha.com/widgets/view.jsp?id=a9c397afa342c368ba24e7620ee41a94

Der spuckt [mm]y(t)=c_1e^{-2t}+c_2e^{-t}-e^{-2t}\sin\left(e^t\right)[/mm] aus ...

>
> Danke

Gruß

schachuzipus


Bezug
                        
Bezug
Variation der Konstanten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:26 Sa 09.07.2011
Autor: likenobody

Vielen dank, für die Mühe! Ich weiß wieviel arbeit es ist, hab des Blöckeweise versucht, jetzt geht mir schon des papier aus.

DAnke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]