matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenVariation der Konstanten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Variation der Konstanten
Variation der Konstanten < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Variation der Konstanten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 Di 25.11.2008
Autor: XPatrickX

Aufgabe
mv'(t)=mg-kv(t), mit m,g,k=const.>0
Die allgemeine Lösung dieser inhomogenen DGL ist die Summe aus einer speziellen Lösung dieser DGL und der allgemeinen Lösung der zugehörigen homogenen Gleichung. Suchen Sie nach einer speziellen Lösung mit dem Ansatz [mm] v_s(t)=v_0(t)v_h(t) [/mm]

Hi!
Ich habe die DGL erstmal etwas umgeschrieben: mv'(t)=mg-kv(t) [mm] \gdw v'(t)+\frac{k}{m}v=g [/mm]

Nun bestimme ich zuerst die allgemeine Lösung der homogenen Gleichung: [mm] v'+\frac{k}{m}v=0 [/mm]

[mm] v'+\frac{k}{m}v=0 [/mm]
[mm] \gdw [/mm] v' = [mm] -\frac{k}{m}v [/mm]
[mm] \gdw \frac{dv}{dt}=-\frac{k}{m}v [/mm]
[mm] \gdw \frac{dv}{v}=-\frac{k}{m}dt [/mm]
[mm] \gdw \int\frac{dv}{v}=\int -\frac{k}{m}dt [/mm]
[mm] \gdw ln(v)=-\frac{k}{m}t [/mm]
[mm] \gdw v=e^{-\frac{k}{m}t} [/mm]

Allgemeine Lösung: [mm] v_h=C*e^{-\frac{k}{m}t} [/mm]


Wie genau muss ich jetzt weitermachen? Kann die entsprechende Vorlesung leider nicht besuchen und muss mir das daher mehr oder weniger selber beibringen.

Dankeschön
Gruß Patrick


        
Bezug
Variation der Konstanten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Di 25.11.2008
Autor: MathePower

Hallo XPatrickX,

> mv'(t)=mg-kv(t), mit m,g,k=const.>0
>  Die allgemeine Lösung dieser inhomogenen DGL ist die Summe
> aus einer speziellen Lösung dieser DGL und der allgemeinen
> Lösung der zugehörigen homogenen Gleichung. Suchen Sie nach
> einer speziellen Lösung mit dem Ansatz [mm]v_s(t)=v_0(t)v_h(t)[/mm]
>  Hi!
>  Ich habe die DGL erstmal etwas umgeschrieben:
> mv'(t)=mg-kv(t) [mm]\gdw v'(t)+\frac{k}{m}v=g[/mm]
>  
> Nun bestimme ich zuerst die allgemeine Lösung der homogenen
> Gleichung: [mm]v'+\frac{k}{m}v=0[/mm]
>  
> [mm]v'+\frac{k}{m}v=0[/mm]
> [mm]\gdw[/mm] v' = [mm]-\frac{k}{m}v[/mm]
> [mm]\gdw \frac{dv}{dt}=-\frac{k}{m}v[/mm]
> [mm]\gdw \frac{dv}{v}=-\frac{k}{m}dt[/mm]
> [mm]\gdw \int\frac{dv}{v}=\int -\frac{k}{m}dt[/mm]
> [mm]\gdw ln(v)=-\frac{k}{m}t[/mm]
>  [mm]\gdw v=e^{-\frac{k}{m}t}[/mm]
>  
> Allgemeine Lösung: [mm]v_h=C*e^{-\frac{k}{m}t}[/mm]
>
>
> Wie genau muss ich jetzt weitermachen? Kann die
> entsprechende Vorlesung leider nicht besuchen und muss mir
> das daher mehr oder weniger selber beibringen.


Mache jetzt C auch von t abhängig.

Dann ist Dein Ansatz: [mm]v\left(t\right)=C\left(t\right)*e^{-\bruch{k}{m}t}[/mm]

Mit diesem Ansatz gehst Du jetzt in die DGL

[mm]v'(t)+\bruch{k}{m}v=g[/mm]

hinein und bestimmst dann [mm]C\left(t\right)[/mm].


>
> Dankeschön
> Gruß Patrick
>  


Gruß
MathePower

Bezug
                
Bezug
Variation der Konstanten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Di 25.11.2008
Autor: XPatrickX

Vielen Dank. Ich bin schonmal einen großen Schritt weiter.
Also wenn ich dieses v(t) in die DGL einsetze komme ich auf [mm] C'(t)*e^{-\frac{k}{m}*t}=g [/mm]
[mm] \gdw C'(t)=g*e^{\frac{k}{m}*t} [/mm]

Also: [mm] C(t)=\frac{m}{k}*g*e^{\frac{k}{m}*t} [/mm]

Ist das jetzte meine spezielle Lösung? In der Aufgabenstellung steht ja:
Die allgemeine Lösung dieser inhomogenen DGL ist die Summe aus einer speziellen Lösung dieser DGL und der allgemeinen Lösung der zugehörigen homogenen Gleichung.

Wäre meine Gesamtlösung dann: [mm] C*e^{-\frac{k}{m}*t} \red{+} \frac{m}{k}*g*e^{\frac{k}{m}*t} [/mm] ???

Ich muss nämlich anschließend auch noch den Grenzwert für t [mm] \to \infty [/mm] bestimmen. Diese Summe würde ja divergieren.

Bezug
                        
Bezug
Variation der Konstanten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Di 25.11.2008
Autor: MathePower

Hallo XPatrickX,

> Vielen Dank. Ich bin schonmal einen großen Schritt weiter.
> Also wenn ich dieses v(t) in die DGL einsetze komme ich auf
> [mm]C'(t)*e^{-\frac{k}{m}*t}=g[/mm]
>  [mm]\gdw C'(t)=g*e^{\frac{k}{m}*t}[/mm]
>  
> Also: [mm]C(t)=\frac{m}{k}*g*e^{\frac{k}{m}*t}[/mm]
>  
> Ist das jetzte meine spezielle Lösung? In der


Die spezielle Lösung ergibt sich gemäß

[mm]v\left(t\right)=C\left(t\right)*e^{-\bruch{k}{m}t}=\bruch{mg}{k}e^{\bruch{k}{m}t}e^{-\bruch{k}{m}t}=\bruch{mg}{k}[/mm]


> Aufgabenstellung steht ja:
>  Die allgemeine Lösung dieser inhomogenen DGL ist die Summe
> aus einer speziellen Lösung dieser DGL und der allgemeinen
> Lösung der zugehörigen homogenen Gleichung.
>  
> Wäre meine Gesamtlösung dann: [mm]C*e^{-\frac{k}{m}*t} \red{+} \frac{m}{k}*g*e^{\frac{k}{m}*t}[/mm]
> ???


Gesamtlösung ist dann:

[mm]v\left(t\right)=C*e^{-\bruch{k}{m}t}+\bruch{mg}{k}[/mm]


>  
> Ich muss nämlich anschließend auch noch den Grenzwert für t
> [mm]\to \infty[/mm] bestimmen. Diese Summe würde ja divergieren.  


Gruß
MathePower

Bezug
                                
Bezug
Variation der Konstanten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:51 Di 25.11.2008
Autor: XPatrickX

Ahh! Okay, ich denke das habe ich kapiert. Danke Dir.
Jetzt kommt ja auch ein vernünftiger Grenzwert heraus ;-)

Grüße Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]