matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikVarianzberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "mathematische Statistik" - Varianzberechnung
Varianzberechnung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Varianzberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 Mi 06.03.2013
Autor: Owen

Aufgabe
Gegeben seien folgende Aktienkurse und prozentuale Renditen:

[mm] \vmat{ i & & Y-AG & Renditen & A-AG & Renditen\\ 14 & Nov 10 & 56,3 & 9,2992 & 282,07 & -0,0523\\ 13 & Okt 10 & 51,51 & 0,1361 & 282,22 & 20,5188 \\ 12 & Sept 10 & 51,44 & 23,4461 & 234,17 & -14,5104 \\ 11 & Aug 10 & 41,67 & 0,8715 & 273,92 & -0,8551 \\ 10 & Jul 10 & 41,31 & 3,1203 & 276,28 & 8,9372 \\ 9 & Jun 10 & 40,06 & 5,5043 & 253,61 & 3,1797 \\ 8 & Mai 10 & 37,97 & 3,0393 & 245,80 & 16,1169 \\ 7 & April 10 & 36,85 & 8,6380 & 211,68 & 14,8111 \\ 6 & März 10 & 33,92 & 14,7497 & 184,37 & -1,4543 \\ 5 & Febr 10 & 29,56 & -3,8074 & 187,10 & 28,8783 \\ 4 & Jan 10 & 30,73 & -2,6299 & 145,17 & 9,6247 \\ 3 & Dez 09 & 31,56 & 1,1863 & 132,43 & 2,7751 \\ 2 & Nov 09 & 31,19 & -5,5993 & 128,85 & 60,0002 \\ 1 & Okt 09 & 33,04 & & 80,53 & } [/mm]

Erstellen Sie die Varianz-Kovarianz Matrix der beiden AG's


Hallo Leute,

mir ist grundsätzlich das Vorgehen hierbei klar. Bei den Lösungshinweisen steht Folgendes:

[mm] \summe_{i=1}^{n} R_{i, Y-AG}= [/mm] 0,5795
[mm] \summe_{i=1}^{n} (R_{i, Y-AG}-\overline{R_{Y-AG}})^{2}= [/mm] 0,0774
[mm] \summe_{i=1}^{n} R_{i, A-AG}= [/mm] 1,4797
[mm] \summe_{i=1}^{n} (R_{i, A-AG}-\overline{R_{A-AG}})^{2}= [/mm] 0,4054
[mm] \summe_{i=1}^{n} (R_{i, Y-AG}-\overline{R_{Y-AG}})(R_{i, A-AG}-\overline{R_{A-AG}})= [/mm] -0,1265

Bleiben wir mal zunächst bei der Y-AG. Den Wert 0,5795 kann ich nachvollziehen. Das ist die aufsummierte Rendite. Wie aber kommt man auf den Wert 0,0774? Dies ist der Wert den man ja zur Bestimmung der Varianz braucht. Wenn ich aber die Varianz gemäß der Summenformel ausrechnen möchte, so gehe ich doch zunächst im ersten Schritt folgendermaßen vor:
[mm] \overline{R_{Y-AG}}=\bruch{0,5795}{13})= [/mm] 0,0446

[mm] (0,092992-0,0446)^{2}+ (0,001361-0,0446)^{2}+....... [/mm]
Aber da ist es doch schon ersichtlich, dass zum Schluss keine 0,0774 rauskommen bei der Rechnung, wenn man alle 13 Werte summiert.

        
Bezug
Varianzberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Mi 06.03.2013
Autor: MathePower

Hallo Owen,

> Gegeben seien folgende Aktienkurse und prozentuale
> Renditen:
>  
> [mm]\vmat{ i & & Y-AG & Renditen & A-AG & Renditen\\ 14 & Nov 10 & 56,3 & 9,2992 & 282,07 & -0,0523\\ 13 & Okt 10 & 51,51 & 0,1361 & 282,22 & 20,5188 \\ 12 & Sept 10 & 51,44 & 23,4461 & 234,17 & -14,5104 \\ 11 & Aug 10 & 41,67 & 0,8715 & 273,92 & -0,8551 \\ 10 & Jul 10 & 41,31 & 3,1203 & 276,28 & 8,9372 \\ 9 & Jun 10 & 40,06 & 5,5043 & 253,61 & 3,1797 \\ 8 & Mai 10 & 37,97 & 3,0393 & 245,80 & 16,1169 \\ 7 & April 10 & 36,85 & 8,6380 & 211,68 & 14,8111 \\ 6 & März 10 & 33,92 & 14,7497 & 184,37 & -1,4543 \\ 5 & Febr 10 & 29,56 & -3,8074 & 187,10 & 28,8783 \\ 4 & Jan 10 & 30,73 & -2,6299 & 145,17 & 9,6247 \\ 3 & Dez 09 & 31,56 & 1,1863 & 132,43 & 2,7751 \\ 2 & Nov 09 & 31,19 & -5,5993 & 128,85 & 60,0002 \\ 1 & Okt 09 & 33,04 & & 80,53 & }[/mm]
>  
> Erstellen Sie die Varianz-Kovarianz Matrix der beiden AG's
>  
> Hallo Leute,
>  
> mir ist grundsätzlich das Vorgehen hierbei klar. Bei den
> Lösungshinweisen steht Folgendes:
>  
> [mm]\summe_{i=1}^{n} R_{i, Y-AG}=[/mm] 0,5795
>  [mm]\summe_{i=1}^{n} (R_{i, Y-AG}-\overline{R_{Y-AG}})^{2}=[/mm]
> 0,0774
>  [mm]\summe_{i=1}^{n} R_{i, A-AG}=[/mm] 1,4797
>  [mm]\summe_{i=1}^{n} (R_{i, A-AG}-\overline{R_{A-AG}})^{2}=[/mm]
> 0,4054
>  [mm]\summe_{i=1}^{n} (R_{i, Y-AG}-\overline{R_{Y-AG}})(R_{i, A-AG}-\overline{R_{A-AG}})=[/mm]
> -0,1265
>  
> Bleiben wir mal zunächst bei der Y-AG. Den Wert 0,5795
> kann ich nachvollziehen. Das ist die aufsummierte Rendite.
> Wie aber kommt man auf den Wert 0,0774? Dies ist der Wert
> den man ja zur Bestimmung der Varianz braucht. Wenn ich
> aber die Varianz gemäß der Summenformel ausrechnen
> möchte, so gehe ich doch zunächst im ersten Schritt
> folgendermaßen vor:
>  [mm]\overline{R_{Y-AG}}=\bruch{0,5795}{13})=[/mm] 0,0446
>  
> [mm](0,092992-0,0446)^{2}+ (0,001361-0,0446)^{2}+.......[/mm]
> Aber da ist es doch schon ersichtlich, dass zum Schluss
> keine 0,0774 rauskommen bei der Rechnung, wenn man alle 13
> Werte summiert.


Das ist ein Irrtum, denn

[mm](0,092992-0,0446)^{2}+ (0,001361-0,0446)^{2} \approx 0,0042[/mm]


Gruss
MathePower

Bezug
                
Bezug
Varianzberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:01 Mi 06.03.2013
Autor: Owen

Achso, gut, dann ist es klar. Dankesehr.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]