matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVarianz Summierte Zufallsvar.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Varianz Summierte Zufallsvar.
Varianz Summierte Zufallsvar. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Varianz Summierte Zufallsvar.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:15 Do 22.01.2015
Autor: RunOrVeith

Aufgabe
Es wird n [mm] \in \IN [/mm] mal eine faire Münze geworfen. Dabei bezeichne die Zufallsvariable [mm] X_i=\begin{cases} 0, & \mbox{für Zahl oben} \\ 1, & \mbox{für Kopf oben} \end{cases} [/mm] den Ausgang des Experiments nach dem i-ten Wurf für i [mm] \in [/mm] {1,...,n}.
Die Zufallsvariable [mm] S_n= \bruch{1}{n}\summe_{i=1}^{n}X_i [/mm] bezeichne die relative Häufigkeit von Kopf nach n Runden.

Berechnen sie Erwartungswert [mm] E(S_n) [/mm] und Varianz [mm] V(S_n). [/mm]


Hallo,

ich studiere jetzt zwar schon 3 Semester, aber mit Stochastik kann ich mich einfach schon seit der Schule nicht anfreunden.

[mm] E(S_n)=E(\bruch{1}{n}\summe_{i=1}^{n}X_i)=\bruch{1}{n}E(\summe_{i=1}^{n}X_i)=\bruch{1}{n}*\bruch{n}{2}=\bruch{1}{2}. [/mm]
Soweit alles klar.
[mm] V(S_n)= E(S_n^{2})-(E(S_n))^{2}=\bruch{1}{n^{2}}*E((\summe_{i=1}^{n}X_i)^{2})-(\bruch{1}{2})^{2}= [/mm]
Jetzt ist mir aber überhaupt nicht klar, wie ich weiter machen muss, oder wie man das anders berechnen kann.

Vielen Dank für eure Hilfe!

Edit: Habe es herausgefunden:
[mm] V(S_n)= V(\bruch{1}{n}(\summe_{i=1}^{n}X_i)) =\bruch{1}{n^{2}} *V(\summe_{i=1}^{n} X_i) [/mm] = [mm] (X_i [/mm] unabhängig) [mm] \bruch{1}{n^{2}}*\summe_{i=1}^{n}V(X_i)=\bruch{1}{n^{2}}*\bruch{n}{4}=\bruch{1}{n*4} [/mm]



        
Bezug
Varianz Summierte Zufallsvar.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Do 22.01.2015
Autor: DieAcht

Hallo RunOrVeith!


> Es wird n [mm]\in \IN[/mm] mal eine faire Münze geworfen. Dabei
> bezeichne die Zufallsvariable [mm]X_i=\begin{cases} 0, & \mbox{für Zahl oben} \\ 1, & \mbox{für Kopf oben} \end{cases}[/mm]
> den Ausgang des Experiments nach dem i-ten Wurf für i [mm]\in[/mm]
> {1,...,n}.
>  Die Zufallsvariable [mm]S_n= \bruch{1}{n}\summe_{i=1}^{n}X_i[/mm]
> bezeichne die relative Häufigkeit von Kopf nach n Runden.
>  
> Berechnen sie Erwartungswert [mm]E(S_n)[/mm] und Varianz [mm]V(S_n).[/mm]
>  
> Hallo,
>  
> ich studiere jetzt zwar schon 3 Semester, aber mit
> Stochastik kann ich mich einfach schon seit der Schule
> nicht anfreunden.
>  
> [mm]E(S_n)=E(\bruch{1}{n}\summe_{i=1}^{n}X_i)=\bruch{1}{n}E(\summe_{i=1}^{n}X_i)=\bruch{1}{n}*\bruch{n}{2}=\bruch{1}{2}.[/mm]

Richtig.

>  Soweit alles klar.
>  [mm]V(S_n)= E(S_n^{2})-(E(S_n))^{2}=\bruch{1}{n^{2}}*E((\summe_{i=1}^{n}X_i)^{2})-(\bruch{1}{2})^{2}=[/mm]
> Jetzt ist mir aber überhaupt nicht klar, wie ich weiter
> machen muss, oder wie man das anders berechnen kann.
> Vielen Dank für eure Hilfe!
>  
> Edit: Habe es herausgefunden:
>  [mm]V(S_n)= V(\bruch{1}{n}(\summe_{i=1}^{n}X_i)) =\bruch{1}{n^{2}} *V(\summe_{i=1}^{n} X_i)[/mm]
> = [mm](X_i[/mm] unabhängig)
> [mm]\bruch{1}{n^{2}}*\summe_{i=1}^{n}V(X_i)=\bruch{1}{n^{2}}*\bruch{n}{4}=\bruch{1}{n*4}[/mm]

Richtig.


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]