matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVarianz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Varianz
Varianz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Varianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 Do 23.06.2011
Autor: Joan2

Aufgabe
Zeige für den Bernoulli-Prozess B(t): $E(B(t)) = tp$ und $Var(B(t)) = tp(1-p)$

$B(0)=0$
$B(t)-B(t-1) = [mm] \begin{cases} 1, & \mbox{mit Wahrscheinlichkeit } p \\ 0, & \mbox{mit Wahrscheinlichkeit } 1-p \end{cases}$ [/mm]


Hallo,

wir haben im Tutorium die Aufgaben bereits besprochen, aber jetzt verstehe ich einen Teil nicht. Wie man auf den Erwartungswert kommt, ist klar. Bei der Varianz hatte wir aufgeschrieben:

$Var(B(t))= [mm] Var[\summe_{i=1}^{t} [/mm] (B(i)-B(i-1))]$

$= t [mm] \cdot [/mm] Var((B(i)-B(i-1))$

$= [mm] t(E((B(i)-B(i-1))^2 [/mm] - [mm] (E((B(i)-B(i-1))^2))$ [/mm]

$= t (p [mm] \cdot [/mm] 1 + (1-p) [mm] \cdot [/mm] 0 [mm] -(tp)^2)$ [/mm] Wie kommt man darauf? Ich schlussfolgere immer auf: [mm] t(p^2 [/mm] - [mm] t^2p^2) [/mm]

$= [mm] t(p-p^2)$ [/mm] zusammengefasst ergibt das doch: [mm] t(p-t^2p^2) [/mm]

$= tp(1-p)$


Weiß einer weiter? :(

Viele Grüße
Joan

        
Bezug
Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 Do 23.06.2011
Autor: blascowitz

Hallo

> Zeige für den Bernoulli-Prozess B(t): [mm]E(B(t)) = tp[/mm] und
> [mm]Var(B(t)) = tp(1-p)[/mm]
>  
> [mm]B(0)=0[/mm]
>  [mm]B(t)-B(t-1) = \begin{cases} 1, & \mbox{mit Wahrscheinlichkeit } p \\ 0, & \mbox{mit Wahrscheinlichkeit } 1-p \end{cases}[/mm]
>  
> Hallo,
>  
> wir haben im Tutorium die Aufgaben bereits besprochen, aber
> jetzt verstehe ich einen Teil nicht. Wie man auf den
> Erwartungswert kommt, ist klar. Bei der Varianz hatte wir
> aufgeschrieben:
>  
> [mm]Var(B(t))= Var[\summe_{i=1}^{t} (B(i)-B(i-1))][/mm]
>  
> [mm]= t \cdot Var((B(i)-B(i-1))[/mm]
>  
> [mm]= t(E((B(i)-B(i-1))^2 - (E((B(i)-B(i-1))^2))[/mm]
>  
> [mm]= t (p \cdot 1 + (1-p) \cdot 0 -(tp)^2)[/mm] Wie kommt man
> darauf? Ich schlussfolgere immer auf: [mm]t(p^2[/mm] - [mm]t^2p^2)[/mm]
>  

Bei ersten Teil ist das zweite Moment ausgerechnet worden, also [mm] $E[(B(i)-B(i-1))^2]$. [/mm] Diese ergibt sich als [mm] $1^2\cdot [/mm] p + [mm] 0^2\cdot(1-p)$. [/mm]
Beim zweiten Teil wurde einfach der Erwartungswert $E[B(t)]$ quadriert.

> [mm]= t(p-p^2)[/mm] zusammengefasst ergibt das doch: [mm]t(p-t^2p^2)[/mm]
>  

Hier scheint einfach ein $t$ verschwunden zu sein. Deine Zusammenfassung stimmt. Somit müsste das Ergebnis sein $tp(1-t^2p)$

> [mm]= tp(1-p)[/mm]
>  
> Weiß einer weiter? :(
>  
> Viele Grüße
>  Joan

Viele Grüße
Blasco

Bezug
                
Bezug
Varianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:59 Do 23.06.2011
Autor: Joan2

Achso. Hab vielen Dank für die Erkläfung :)

Gruß Gruß
Joan ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]