matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenVandermondesche Identität
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Vandermondesche Identität
Vandermondesche Identität < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vandermondesche Identität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Fr 08.12.2006
Autor: vicky

Aufgabe
Für x,y [mm] \ge [/mm] 1, x,y [mm] \in \IR [/mm] gilt:

a(x +y) = a(x)a(y) mit [mm] a(x)=\summe_{n=0}^{\infty} \vektor{x\\n} [/mm] , a(y) analog.

Hallo,

also ich weiß das die oben genannten Reihen absolut konvergent sind. Daher kann ich das Cauchy-Produkt anwenden.
D.h. [mm] c_{n} [/mm] = [mm] \summe_{k=0}^{n} a_{k}b_{n-k} [/mm] = [mm] \summe_{k=0}^{n} \vektor{x\\k}*\vektor{y\\n-k} =\vektor{x\\0}*\vektor{y\\n}+\vektor{x\\1}*\vektor{y\\n-1}+...+\vektor{x\\n}*\vektor{y\\0} [/mm]
Es muß dann nachher [mm] c_{n} [/mm] = [mm] \vektor{x+y\\n} [/mm] = [mm] \summe_{k=0}^{n} \vektor{x\\k}*\vektor{y\\n-k} [/mm] stehen, doch wie sehen die Zwischenschritte aus? Für x,y [mm] \in \IN [/mm] könnte ich es noch ausrechnen doch nun sollen wir ja für [mm] x,y\in \IR [/mm] den Beweis führen.

Wie kann ich da am besten vorgehen?

Gruß
vicky

        
Bezug
Vandermondesche Identität: Antwort
Status: (Antwort) fertig Status 
Datum: 10:54 Sa 09.12.2006
Autor: Leopold_Gast

Mit reeller Analysis kann man folgendermaßen vorgehen.

Die binomische Reihe

[mm](1+t)^x = \sum_{n=0}^{\infty}~{x \choose n} t^n[/mm]

konvergiert bei beliebigem Parameter [mm]x[/mm] mindestens für alle [mm]t[/mm] mit [mm]|t|<1[/mm]. In den Fällen, wo 1 gerade der Konvergenzradius ist, folgt mit dem Abelschen Grenzwertsatz für [mm]t = 1[/mm]:

[mm]2^x = \sum_{n=0}^{\infty}~{x \choose n}[/mm]

Um den Abelschen Grenzwertsatz anwenden zu können, muß man allerdings die Konvergenz der Reihe nachweisen. Dann reduziert sich der ganze Beweis auf das erste Potenzgesetz. Fehlt jetzt nur noch die besagte Konvergenz ...

Für einen Beweis deiner Identität ohne Analysis könnte folgende Idee zum Ziel führen:

[mm]p_y(x) = {{x+y} \choose n} = \frac{1}{n!} \left( x - (-y) \right) \left( x - (-y+1) \right) \left( x - (-y+2) \right) \cdots \left( x - (-y+n-1) \right)[/mm]

Hier steht ein Polynom in [mm]x[/mm] vom Grad [mm]n[/mm] mit den [mm]n[/mm] verschiedenen Nullstellen [mm]-y,-y+1,-y+2,\ldots,-y+n-1[/mm] und [mm]\frac{1}{n!}[/mm] als Koeffizienten von [mm]x^n[/mm].

Wenn es dir gelingt, diese Eigenschaften auch für das Polynom

[mm]q_y(x) = \sum_{k=0}^n~{x \choose k}{y \choose {n-k}}[/mm]

nachzuweisen, folgt [mm]p_y(x) = q_y(x)[/mm].

Fangen wir einmal mit dem Grad an. [mm]{x \choose k}[/mm] ist vom Grad [mm]k[/mm]. Somit liefert in der Summe nur [mm]k=n[/mm] einen Beitrag zur Potenz [mm]x^n[/mm]. Damit ist [mm]q_y(x)[/mm] sicher vom Grad [mm]n[/mm]. Und auch der Koeffizient [mm]\frac{1}{n!}[/mm] paßt, denn es ist ja [mm]{y \choose 0} = 1[/mm]. Jetzt fehlt noch der Nachweis von

[mm]q_y(-y) = q_y(-y+1) = q_y(-y+2) = \ldots = q_y(-y+n-1) = 0[/mm]

Beginnen wir mit [mm]q_y(-y) = 0[/mm]. Als Polynom in [mm]y[/mm] ist

[mm]s_0(y) = q_y(-y)[/mm]

höchstens vom Grad [mm]n[/mm]. Denn in

[mm]s_0(y) = \sum_{k=0}^n~{{-y} \choose k}{y \choose {n-k}}[/mm]

ist jeder Summand vom Grad [mm]n[/mm]. Falls nun [mm]s_0(y)[/mm] mehr als [mm]n[/mm] Nullstellen besitzt, muß [mm]s_0(y)[/mm] das Nullpolynom sein. Versuche es einmal mit [mm]s_0(0) = s_0(1) = \ldots = s_0(n) = 0[/mm]. Du kannst natürlich auch [mm]n+1[/mm] andere Einsetzungen wählen, so, wie es für den Beweis am bequemsten ist.

Und dann dasselbe für die Polynome [mm]s_1(y) = q_y(-y+1), \, s_2(y) = q_y(-y+2), \, \ldots, \, s_{n-1}(y) = q_y(-y+n-1)[/mm].

Etwas Einfacheres ist mir im Moment leider nicht eingefallen ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]