matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVandermonde Identität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Vandermonde Identität
Vandermonde Identität < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vandermonde Identität: Induktionsbeweis
Status: (Frage) überfällig Status 
Datum: 19:52 Fr 06.02.2009
Autor: bodo_der_dackel

Guten Tag,

ich sitze gerade am Indultionsbeweis für die Vandermonde Identität:

Induktionsannahme (k):
[mm] \summe_{j=0}^{k} \vektor{m \\ j} [/mm] * [mm] \vektor{n \\ k-j} [/mm] = [mm] \vektor{m+n \\ k} [/mm]

Induktionsbehauptung (k+1):
[mm] \summe_{j=0}^{k+1} \vektor{m \\ j} [/mm] * [mm] \vektor{n \\ k+1-j} [/mm] = [mm] \vektor{m+n \\ k+1} [/mm]

Induktionsschluss:
[mm] \summe_{j=0}^{k+1} \vektor{m \\ j} [/mm] * [mm] \vektor{n \\ k+1-j} [/mm] = [mm] \summe_{j=-1}^{k} \vektor{m \\ j+1} [/mm] * [mm] \vektor{n \\ k-j} [/mm] = [mm] \vektor{n \\ k+1} [/mm] + [mm] \summe_{j=0}^{k} \vektor{m \\ j+1} [/mm] * [mm] \vektor{n \\ k-j} [/mm] = ... ?

So jetzt weiß ich nicht mehr weiter...ich schaff es einfach nicht die Summe durch Indexverschiebung und ähnliche Tricks auf die Form zu bringen, die ich brauche um die Induktionsannahme einzusetzen...

Hat jemand eine Idee...??

Gruß



        
Bezug
Vandermonde Identität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Fr 06.02.2009
Autor: luis52

Moin,

*muss* es ein Induktionsbeweis sein?

vg Luis

Bezug
        
Bezug
Vandermonde Identität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:45 Sa 07.02.2009
Autor: barsch

Hi,

> Guten Tag,
>
> ich sitze gerade am Indultionsbeweis für die Vandermonde
> Identität:
>
> Induktionsannahme (k):
>  [mm]\summe_{j=0}^{k} \vektor{m \\ j}[/mm] * [mm]\vektor{n \\ k-j}[/mm] =
> [mm]\vektor{m+n \\ k}[/mm]
>
> Induktionsbehauptung (k+1):
> [mm]\summe_{j=0}^{k+1} \vektor{m \\ j}[/mm] * [mm]\vektor{n \\ k+1-j}[/mm] =
> [mm]\vektor{m+n \\ k+1}[/mm]
>
> Induktionsschluss:
> [mm]\summe_{j=0}^{k+1} \vektor{m \\ j}[/mm] * [mm]\vektor{n \\ k+1-j}[/mm] =
> [mm]\summe_{j=-1}^{k} \vektor{m \\ j+1}[/mm] * [mm]\vektor{n \\ k-j}[/mm] =
> [mm]\vektor{n \\ k+1}[/mm] + [mm]\summe_{j=0}^{k} \vektor{m \\ j+1}[/mm] *
> [mm]\vektor{n \\ k-j}[/mm] = ... ?
>
> So jetzt weiß ich nicht mehr weiter...ich schaff es einfach
> nicht die Summe durch Indexverschiebung und ähnliche Tricks
> auf die Form zu bringen, die ich brauche um die
> Induktionsannahme einzusetzen...
>  
> Hat jemand eine Idee...??

Beim Induktionsschluss wäre ich anders vorgegangen. Anstelle der Indexverschiebung würde ich den Term mit [mm] \red{k+1} [/mm] abspalten:

[mm] \summe_{j=0}^{k+1}\vektor{m \\ j}*\vektor{n \\ k+1-j}=\summe_{j=0}^{k}\vektor{m \\ j}*\vektor{n \\ k+1-j}+\vektor{m \\ \red{k+1}}*\vektor{n \\ k+1-(\red{k+1})}=\summe_{j=0}^{k}\vektor{m \\ j}*\vektor{n \\ k+1-j}+\vektor{m \\ \red{k+1}}*\vektor{n \\ k+1-\red{k-1}} [/mm]

[mm] =\summe_{j=0}^{k}\vektor{m \\ j}*\vektor{n \\ k+1-j}+\vektor{m \\ \red{k+1}}*\vektor{n \\ 0}=\summe_{j=0}^{k}\vektor{m \\ j}*\vektor{n \\ k+1-j}+\vektor{m \\ \red{k+1}}*1 [/mm]

Verwenden wir jetzt die Induktionsvoraussetzung:

[mm] \summe_{j=0}^{k}\vektor{m \\ j}*\vektor{n \\ k+1-j}+\vektor{m \\ \red{k+1}}*\vektor{n \\ 0}=\summe_{j=0}^{k}\vektor{m \\ j}*\vektor{n \\ k+1-j}+\vektor{m \\ \red{k+1}}*1 [/mm]


[mm] =\vektor{m+n \\ k}+\vektor{m \\ \red{k+1}} [/mm]

Okay, jetzt weiß ich auch nicht weiter. Ich poste es trotzdem mal.

MfG barsch


Bezug
                
Bezug
Vandermonde Identität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:45 Sa 07.02.2009
Autor: bodo_der_dackel

ja, ich will es schon mit induktion machen...

zu meinem vorposter: das einsetzen der induktionsannahme ist - wie du durch vergleichen feststellen kannst - falsch. hatte das zuvor auch schon mal durchgerechnet.

ideen?

gruß

Bezug
                        
Bezug
Vandermonde Identität: Antwort
Status: (Antwort) fertig Status 
Datum: 00:20 Mo 09.02.2009
Autor: reverend

Hallo Bodo,

schau doch mal []hier und []hier, da ist die gleiche Frage auch schonmal diskutiert worden.

Grüße,
reverend

Bezug
        
Bezug
Vandermonde Identität: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 So 08.02.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]