matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenVandermonde-Determinante
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Determinanten" - Vandermonde-Determinante
Vandermonde-Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vandermonde-Determinante: Tipp zum Beweis per Induktion
Status: (Frage) beantwortet Status 
Datum: 19:38 Mi 06.06.2007
Autor: dany1912

Aufgabe
Seien [mm] a_1, a_2, [/mm] ... , [mm] a_n \in\ [/mm] IR, n [mm] \in\ [/mm] IN, n [mm] \ge [/mm] 2 und

[mm] W_n [/mm] = [mm] \begin{vmatrix} 1 & 1 & 1 & ... & 1 \\ a_1 & a_2 & a_3 & ... & a_n\\ a_1^2 & a_2^2 & a_3^2 & ... a_n^2\\ ... & ... & ... & ... \\ a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & ... & a_n^{n-1} \end{vmatrix} [/mm]
Man zeige (Induktion!) :
[mm] W_n [/mm] = [mm] \prod_{i \le j < i \le n} (a_i-a_j) [/mm]  

Hallo liebe Mathematiker!
Ich war in der zugehörigen Übungsstunde leider nicht da, habe also wirklich keinerlei Ahnung, was zu machen ist. Ich hab versucht mich online schon mal schlau zu machen und ähnliche Beweise gefunden, aber da sieht die Determinante immer anders aus, bei den Beweisen ist die erste Spalte komplett gleich 1, nicht die erste Zeile.

Könntet ihr mir nen Tipp geben, wie ich mich an die Aufgabe ranmachen muss? Das wäre echt super! Vielen Dank!

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Vandermonde-Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Mi 06.06.2007
Autor: Somebody

Na, mein Guter: der Wert der Determinante bleibt bei Transposition der Matrix unverändert. Also kannst Du ruhig exakt dieselbe Beweisidee verwenden, die Du bereits gesehen hast. Du musst einfach die Spaltenoperationen durch Zeilenoperationen ersetzen bzw. umgekehrt..

Bezug
                
Bezug
Vandermonde-Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Mi 06.06.2007
Autor: dany1912

Danke für die schnelle Antwort!!! (Bin aber eine Gute... *g*)
So, wegen der Aufgabe aber noch mal schnell eine kleine Frage: Die Indizes i und j, wie ist das gemeint? Bzw. mir ist noch unklar, worauf das ganze zielt: Soll dass jetzt eine Vereinfachung zur Berechnung einer Determinante sein? Kann ich diese Formel immer anwenden?


Bezug
                        
Bezug
Vandermonde-Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Mi 06.06.2007
Autor: Somebody

Es ist doch gewiss lustig (und auch durchaus eventuell sogar nützlich), eine derart kompakte Formel für den Wert der Vandermondeschen Determinante (für beliebiges [mm]n[/mm]) zu haben.
Eine einfache praktische Anwendung ist etwa folgende: Sind von einer Polynomfunktion [mm]n-1[/mm]-ten Grades [mm]f(x)[/mm] die Funktionswerte an [mm]n[/mm] Stellen [mm]a_1, a_2, \ldots, a_n[/mm] gegeben, so ist die Determinante des linearen Gleichungssystems, das man aus dieser Information über [mm]f(x)[/mm] für die Koeffizienten der Potenzen von [mm]x[/mm] im Funktionsterm [mm]f(x)[/mm] erhält, gerade eine Vandermondesche Determinante. Also folgt aus der Formel, die Du beweisen sollst, dass das lineare Gleichungssystem für die Koeffizienten von [mm]f(x)[/mm] genau dann regulär ist (also genau eine einzige Lösung hat), wenn die [mm]n[/mm] gegebenen Stellen alle verschieden sind (und genau dann nicht-regulär, aka. singulär, wenn zwei der gegebenen Stellen gleich sind).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]