matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeV über K
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - V über K
V über K < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

V über K: Notation
Status: (Frage) beantwortet Status 
Datum: 11:59 Do 21.08.2014
Autor: lzaman

Hallo zusammen,

ich frage mich seit ein paar Tagen, weshalb man von [mm] $\mathbb [/mm] K$-Vektorräumen oder Vektorräumen über [mm] $\mathbb [/mm] K$ spricht?
Heißt das jetzt, dass die Vektorkomponenten dem Körper [mm] $\mathbb [/mm] K$ enstammen oder die Skalare aus dem Körper [mm] $\mathbb [/mm] K$ zur Multiplikation von Vektoren sind?

        
Bezug
V über K: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Do 21.08.2014
Autor: MaslanyFanclub

Hallo,>  Hallo zusammen,
>  
> ich frage mich seit ein paar Tagen, weshalb man von [mm]\mathbb[/mm]
> K-Vektorräumen oder Vektorräumen über [mm]\mathbb K[/mm]
> spricht?

Du erwähnst hier schon das Wesentliche: Es ist eine Sprechweise.

>  Heißt das jetzt, dass die Vektorkomponenten dem Körper
> [mm]\mathbb[/mm] K enstammen oder die Skalare aus dem Körper
> [mm]\mathbb[/mm] K zur Multiplikation von Vektoren sind?

Ein Vektor muss keine Vektorkompenenten haben. Auch hängen die Kompenenten von der gewählten Basis ab.
Skalare sind aus dem Körper K,  ebenso wie die Komponenten in der Komponentenschreibweise.

z.B. sind die reellen Zahlen ein [mm] $\mathbb [/mm] Q$-Vektorraum mit der Addition der rellen Zahlen und Skalarmultiplkation [mm] $\mathbb [/mm] Q [mm] \times \mathbb [/mm] R [mm] \to \mathbb [/mm] R, [mm] \quad [/mm] (q,x) [mm] \mapsto q\cdot [/mm] x$ [mm] ($\cdot$ [/mm] die übliche Multipliaktion der reellen zahlen.

Bezug
                
Bezug
V über K: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 Do 21.08.2014
Autor: lzaman

Alles klar,

also sind es im Vektorraum über [mm] $\mathbb [/mm] K$ die Skalare, die [mm] $\mathbb [/mm] K$ enstammen?

Genauso wie in deinem Beispiel es die Elemente aus [mm] $\mathbb [/mm] Q$ sind, richtig?

Sonst finde ich keine weitere Erklärung zur dieser Sprechweise...

Bezug
                        
Bezug
V über K: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Do 21.08.2014
Autor: MaslanyFanclub


> Alles klar,
>  
> also sind es im Vektorraum über [mm]\mathbb K[/mm] die Skalare, die
> [mm]\mathbb K[/mm] enstammen?

Nein.
Die Elemente von [mm] $\mathbb [/mm] K$ sind die Skalare.
Die Elemente des Vektorraums heißen Vektoren.

> Genauso wie in deinem Beispiel es die Elemente aus [mm]\mathbb Q[/mm]
> sind, richtig?
>  
> Sonst finde ich keine weitere Erklärung zur dieser
> Sprechweise...

Sprechweisen sind auch schwer bis gar nicht zu erklären.
Es ist halt wichtig zu sagen welcher Grundkörper benutzt wird, da sich somit verschiedene Räume ergeben.
z.B. die komplexen Zahlen als komplexer oder reller Vektorraum oder
die reellen zahlen als rationaler oder reeller Vektorraum.

Bezug
                                
Bezug
V über K: akzeptiert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:25 Do 21.08.2014
Autor: lzaman

Supi danke

Ich werde mich dran gewöhnen

Bezug
                                        
Bezug
V über K: Nochmal verinnerlicht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:55 Mo 01.09.2014
Autor: lzaman

Hallo zusammen,

ich habe mich nochmal damit zufällig beschäftigt und folgendes dazu gefunden:

[]http://www.zib.de/weber/Vektorraum.pdf

Vor allem der erste Abschnitt unter der Definiton hat mir sehr geholfen.

Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]