matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisVR d. Polynome kein Banachraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - VR d. Polynome kein Banachraum
VR d. Polynome kein Banachraum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

VR d. Polynome kein Banachraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:15 Di 08.05.2012
Autor: Schachtel5

Hallo,
das der Vektorraum der Polynome auf [mm] \IR [/mm] P, also [mm] (P(\IR), \parallel [/mm] . [mm] \parallel) [/mm] kein Banachraum ist, sehe ich ein und verstehe die Begründungen, außer die mit dem Satz von Baire, wie wir das im Tutorium hatten. Wir haben [mm] P_n [/mm] den Unterraum mit Polynome vom Grad [mm] \le [/mm] n betrachtet. [mm] P=\bigcup_{n\in \IN}^{}P_n [/mm] . wir haben ein Polynom vom Grad n+1 gefunden, dass beliebig nah an Polynom in [mm] P_n [/mm] liegt, aber ich verstehe nicht, wie man hier mit dem Satz von Baire argumentiert, wieso ist das dann ein Widerspruch zu dem? Ich hoffe, mir kann jemand helfen. Lg

        
Bezug
VR d. Polynome kein Banachraum: Antwort
Status: (Antwort) fertig Status 
Datum: 06:35 Di 08.05.2012
Autor: fred97


> Hallo,
> das der Vektorraum der Polynome auf [mm]\IR[/mm] P, also [mm](P(\IR), \parallel[/mm]
> . [mm]\parallel)[/mm] kein Banachraum ist, sehe ich ein und verstehe
> die Begründungen, außer die mit dem Satz von Baire, wie
> wir das im Tutorium hatten. Wir haben [mm]P_n[/mm] den Unterraum mit
> Polynome vom Grad [mm]\le[/mm] n betrachtet. [mm]P=\bigcup_{n\in \IN}^{}P_n[/mm]
> . wir haben ein Polynom vom Grad n+1 gefunden, dass
> beliebig nah an Polynom in [mm]P_n[/mm] liegt, aber ich verstehe
> nicht, wie man hier mit dem Satz von Baire argumentiert,
> wieso ist das dann ein Widerspruch zu dem? Ich hoffe, mir
> kann jemand helfen. Lg


Ich verstehe nicht so recht, wie der von Dir beschriebene Beweis mit dem Satz von Baire gehen soll.

Ich würde es so machen: wir nehmen an, P wäre ein Banachraum. Da die Unterräume [mm] P_n [/mm] endlichdimensional sind, sind sie abgeschlossen. Wegen
$ [mm] P=\bigcup_{n\in \IN}^{}P_n [/mm] $ folgt aus dem Satz von Baire, dass es ein N [mm] \in \IN [/mm] gibt , so dass [mm] P_N [/mm] eine offene Kugel enthält.

Dann ist aber [mm] P_N=P, [/mm] Widerspruch !

Dabei habe ich folgendes Lemma verwendet:

Lemma: Ist X ein normierter Raum und Y ein Unterraum, der eine offene Kugel enthält, so ist Y=X.

Kannst Du dieses Lemma beweisen ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]