matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Ursprungsgerade berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Ursprungsgerade berechnen
Ursprungsgerade berechnen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ursprungsgerade berechnen: Ursprungsgerade
Status: (Frage) beantwortet Status 
Datum: 16:06 Di 07.10.2014
Autor: Asura

Aufgabe
Gesucht ist eine Ursprungs-gerade, die Tangente an den Graphen von f ist.
a) f(x) = [mm] \wurzel{x} [/mm] - 1 , x [mm] \ge [/mm] 0
b) f(x) = [mm] \bruch{1}{x} [/mm] - 1 , x >0

Guten Tag,
und zwar durch einen Fehltag habe ich den Stoff verpasst, welcher behandelt wurde. Das Thema war Ursprungsgeraden.
Nun muss ich zwei Aufgaben dazu erstellen. Nur muss ich ehrlich gestehen, habe ich keinen Ansatz.
Deswegen ist meine Frage, ob man mir das anhand eines Beispiels von den oben genannten Aufgaben, den Weg dazu erklären könnte. Die andere Aufgabe würde ich selbstverständlich selber machen, nur fehlt es mir da gerade einfach an einen Lösungsansatz.

MfG
Asura

        
Bezug
Ursprungsgerade berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Di 07.10.2014
Autor: Diophant

Hallo,

> Gesucht ist eine Ursprungs-gerade, die Tangente an den
> Graphen von f ist.
> a) f(x) = [mm]\wurzel{x}[/mm] - 1 , x [mm]\ge[/mm] 0
> b) f(x) = [mm]\bruch{1}{x}[/mm] - 1 , x >0
> Guten Tag,
> und zwar durch einen Fehltag habe ich den Stoff verpasst,
> welcher behandelt wurde. Das Thema war Ursprungsgeraden.
> Nun muss ich zwei Aufgaben dazu erstellen.

Du meinst, du musst sie lösen?

> Nur muss ich

> ehrlich gestehen, habe ich keinen Ansatz.
> Deswegen ist meine Frage, ob man mir das anhand eines
> Beispiels von den oben genannten Aufgaben, den Weg dazu
> erklären könnte. Die andere Aufgabe würde ich
> selbstverständlich selber machen, nur fehlt es mir da
> gerade einfach an einen Lösungsansatz.

Nein, das hatten wire glaub ich schon öfters. Wir verfolgen mit diesem Forum Zielsetzungen, die wir mit solchem Angeben fertiger Lösungen konterkarrieren würden.

Es wäre besser gewesen, du hättest dir den verpassten Stoff von irgendjemand benennen lassen. Man kann hier vermuten, dass es sich um die allg. Tangentengleichung

t: y=f'(u)*(x-u)+f(u)

handelt. Falls dem so ist, dann wirst du die erforderlichen Beispiele, um das zu verstehen (es handelt sich um nichts anderes als umd die Punkt-Steigungsform einer Geraden) in deinem Schulbuch sicherlich finden.

Ansonsten funktioniert hier in beiden Fällen noch ein weiterer Ansatz* (da es sich um eine algebraische und eine rationale Funktion handelt):

Man setzt

m*x=f(x)

und löst die so entstandene Gleichung in Abhängigkjeit von m auf. Wenn y=m*x Tangente an das entsprechende Schaubild sein soll, so muss bei dieser Rechnung eine Doppellösung herauskommen, was man etwa dadurch berücksichtigt, dass man mit der Mitternachtsformel arbeitet und die auftretende Diskriminante gleich Null setzt. Das lliefert dann wiederum eine Bestimmungsgleichung für m, bei der esw wiederum durchaus mehrere Lösungen geben kann.


Gruß, Diophant

*Der Ansatz funktioniert, wenn f ganzrational, rational oder algebraisch ist und die auftretenden Gleichungen m it den nzur Verfügung stehenden Mitteln lösbar sind. 


Gruß, Diophant
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]