Urnenziehung < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Hi!
Wir haben eine Urne mit s schwarzen und w weißen Kugeln und sonst nichts und ziehen k Kugeln mit 0 <= k <= s + w.
Meine Vermutung ist, dass alle Ziehungen, die zu einer Kombination aus sz schwarzen und wz weißen Kugeln führen, gleich wahrscheinlich sind. Wie aber kann ich das zeigen?
Letztendlich läuft es wohl auf das selbe Problem hinaus, wie zu zeigen, dass z.B. P(a)*P(b|a)*P(c|a und b) * ... = P(b)*P(a|b)*P(c|a und b)* = ...
aber auch hier weiß ich nicht, wie ich das zeigen kann.
Kann mir jemand helfen?
|
|
|
|
Hallo!
> Hi!
>
> Wir haben eine Urne mit s schwarzen und w weißen Kugeln
> und sonst nichts und ziehen k Kugeln mit 0 <= k <= s + w.
> Meine Vermutung ist, dass alle Ziehungen, die zu einer
> Kombination aus sz schwarzen und wz weißen Kugeln führen,
> gleich wahrscheinlich sind. Wie aber kann ich das zeigen?
> Letztendlich läuft es wohl auf das selbe Problem hinaus,
> wie zu zeigen, dass z.B. P(a)*P(b|a)*P(c|a und b) * ... =
> P(b)*P(a|b)*P(c|a und b)* = ...
> aber auch hier weiß ich nicht, wie ich das zeigen kann.
Zunächst die Modellierung: Es gibt also insgesamt s+w Kugeln, s Schwarze und w Weiße.
Es handelt sich um ein Experiment ohne Zurücklegen, und jede Kugel hat dieselbe Wahrscheinlichkeit, gezogen zu werden.
Tatsächlich hat deine Idee schon ziemlich viel damit zu tun.
S sei das Ereignis, eine schwarze Kugel zu ziehen, W das Ereignis, eine weiße Kugel zu ziehen.
$P(S)*P(W|S) = P(W)*P(S|W)$
ist einfach der Satz von Bayes.
Der "Beweis" an sich geht aber auch elementar:
Wir wollen sz Schwarze und wz Weiße ziehen.
Die Wahrscheinlichkeit berechnet sich folgendermaßen, falls erst alle Schwarzen und dann alle Weißen gezogen werden sollen:
$P = [mm] \Big(\frac{s}{s+w}*\frac{s-1}{s+w-1}*...*\frac{s-(sz-1)}{s+w-(sz-1)}\Big)*\Big(\frac{w}{s+w-(sz-1)-1}*\frac{w-1}{s+w-(sz-1)-2}*...*\frac{w-(wz-1)}{s+w-(sz-wz-1)}\Big)$
[/mm]
Und nun kannst du dir leicht überlegen:
Der Nenner bleibt bei jeder Art, wie man zu den sz Schwarzen und den wz Weißen Kugeln kommt, derselbe, denn es werden ja immer sz+wz Kugeln gezogen.
Es bleibt aber auch der Zähler immer derselbe, denn du willst ja sz Schwarze Kugeln und wz Weiße Kugeln ziehen, d.h. irgendwann hast du mal die Wahrscheinlichkeit s/(wieviele Kugeln noch da sind), usw.
Es wechseln also lediglich im Zähler die Zahlen ihre Reihenfolge bei verschiedenen Arten, die gewünschte Kombination zu ziehen.
Übrigens entspricht dein Problem der Hypergeometrischen Verteilung, die sozusagen deine Aussage gleich impliziert.
Grüße,
Stefan
|
|
|
|