matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieUrnenwettkampf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Urnenwettkampf
Urnenwettkampf < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urnenwettkampf: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:02 Mi 04.01.2012
Autor: wieschoo

Hi,

Ich glaube ich verrenne mich irgendwie. Desweiteren habe ich auch Probleme beim aufschreiben. Also bitte alles mit Vorsicht genießen.

Problem:
Es sind 2 Urnen vorhanden Urne A und Urne B. Beide Urnen beinhalten jeweils n Kugel.


Spieler SA führt n-mal folgendes durch:
Er zieht mit Wkeit p im i-ten Schritt eine Kugel aus der Urne und legt sie weg. Mit Wkeit (1-p) nimmt er keine Kugel.

Spieler SB macht das n-mal analog mit seiner eigenen Urne:
Er zieht wieder mit Wkeit p im i-ten Schritt eine Kugel aus der Urne und legt sie weg. Mit Wkeit (1-p) nimmt er keine Kugel.

Wie groß ist die Wkeit, dass Spieler SA weniger Kugel gezogen hat als Spieler SB?

Das Ziehen der Kugel kann ich ja schreiben als
[mm]F_i=\begin{cases} 1 ,& p\\ 0,&(1-p)\end{cases}[/mm]  
und damit hat Spieler SA nach n Zügen [mm]S_n:=\sum_{i=1}^nF_i[/mm] Kugel genommen.
Spieler SB hat auch nach n Zügen [mm]S_n:=\sum_{i=1}^nF_i[/mm] Kugel genommen.

Die gesuchte Wkeit ist ja soetwas wie
[mm]P(S_n(SA) [mm]=1-\sum_{a=0}^n\sum_{k=0}^aP(S_n(SB)=k)[/mm]
[mm]=1-\sum_{a=0}^n\sum_{k=0}^a\binom nk p^k(1-p)^{n-k}=:g(n,p)[/mm]

Allerdings ist [mm]g(1,\frac{1}{2})=2[/mm]. Das ist also in keinem Fall ne Wkeit. Da muss also ein ganz grober Schnitzer drin sein.

Die Frage stellt sich ja, ob [mm]\red{=}[/mm] wirklich gilt.

        
Bezug
Urnenwettkampf: Antwort
Status: (Antwort) fertig Status 
Datum: 08:40 Do 05.01.2012
Autor: Al-Chwarizmi


> Hi,
>  
> Ich glaube ich verrenne mich irgendwie. Desweiteren habe
> ich auch Probleme beim aufschreiben. Also bitte alles mit
> Vorsicht genießen.
>  
> Problem:
>  Es sind 2 Urnen vorhanden Urne A und Urne B. Beide Urnen
> beinhalten jeweils n Kugel.

... man könnte auch sagen:  sie enthalten je n Kugeln  ;-)

> Spieler SA führt n-mal folgendes durch:
> Er zieht mit Wkeit p im i-ten Schritt eine Kugel aus der
> Urne und legt sie weg. Mit Wkeit (1-p) nimmt er keine
> Kugel.
>  
> Spieler SB macht das n-mal analog mit seiner eigenen Urne:
> Er zieht wieder mit Wkeit p im i-ten Schritt eine Kugel
> aus der Urne und legt sie weg. Mit Wkeit (1-p) nimmt er
> keine Kugel.
>  
> Wie groß ist die Wkeit, dass Spieler SA weniger Kugeln
> gezogen hat als Spieler SB?
>  
> Das Ziehen der Kugel kann ich ja schreiben als
>  [mm]F_i=\begin{cases} 1 ,& p\\ 0,&(1-p)\end{cases}[/mm]  
> und damit hat Spieler SA nach n Zügen [mm]S_n:=\sum_{i=1}^nF_i[/mm]
> Kugel genommen.
>  Spieler SB hat auch nach n Zügen [mm]S_n:=\sum_{i=1}^nF_i[/mm]
> Kugel genommen.
>  
> Die gesuchte Wkeit ist ja soetwas wie
>  [mm]P(S_n(SA)
>  
> [mm]=1-\sum_{a=0}^n\sum_{k=0}^aP(S_n(SB)=k)[/mm]
>  [mm]=1-\sum_{a=0}^n\sum_{k=0}^a\binom nk p^k(1-p)^{n-k}=:g(n,p)[/mm]
>  
> Allerdings ist [mm]g(1,\frac{1}{2})=2[/mm]. Das ist also in keinem
> Fall ne Wkeit. Da muss also ein ganz grober Schnitzer drin
> sein.
>  
> Die Frage stellt sich ja, ob [mm]\red{=}[/mm] wirklich gilt.  


Guten Tag wieschoo !

Ich würde mir das so zurechtlegen:
Jeder der beiden Spieler macht ja mit seiner Urne
genau dasselbe Spiel, also haben wir eine total
symmetrische Situation, und es muss gelten

     $\ [mm] P(a_n
Dabei seien [mm] a_n [/mm] und [mm] b_n [/mm] die Anzahlen der von SA bzw. SB
in n Schritten insgesamt gezogenen Kugeln. Um [mm] P(a_n zu berechnen, würde ich mich also zunächst um die Wahr-
scheinlichkeit

    $\ [mm] P(a_n=b_n)\ [/mm] =\ [mm] \summe_{k=0}^{n}P(a_n=b_n=k)$ [/mm]

kümmern. Und nun ist

    $\ [mm] P(a_n=b_n=k)\ [/mm] =\ [mm] P(a_n=k\ \wedge\ b_n=k)\ [/mm] =\ [mm] P(a_n=k)\ [/mm] *\ P( [mm] b_n=k)$ [/mm]

(Unabhängigkeit)

wobei   $\ [mm] P(a_n=k)\ [/mm] =\ P( [mm] b_n=k)\ [/mm] =\ [mm] \pmat{n\\k}*p^{k}*(1-p)^{n-k}$ [/mm]

(Binomialverteilung)

Jetzt einfach noch einsetzen und vereinfachen.

LG   Al





Bezug
                
Bezug
Urnenwettkampf: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 Do 05.01.2012
Autor: wieschoo

Danke dir. Warum denke ich immer um [mm] $\pi^2$ [/mm] Ecken mehr als man muss?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]