matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikUrnenmodelle Aufgabe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Kombinatorik" - Urnenmodelle Aufgabe
Urnenmodelle Aufgabe < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urnenmodelle Aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:04 Mi 11.08.2010
Autor: abi2010

Aufgabe
Bei einem Sportturnier müssen die 12 teilnehmenden Mannschaften auf drei Gruppen mit je vier Mannschaften verteilt werden. Wie viele Möglichkeiten hat der Veranstalter dafür?  

Warum lautet die Lösung dazu:
[mm] \vektor{12 \\ 8} [/mm] * [mm] \vektor{8 \\ 4} [/mm] ?

Die 3 Gruppen tauchen hier doch nirgends auf.

Danke.


        
Bezug
Urnenmodelle Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Mi 11.08.2010
Autor: Gonozal_IX

Huhu,

doch, die drei taucht da auf, weil du 3 Binomialkoeffizienten hast.
Der letzte ist ist nur 1.

Als Anmerkung: Ich find die Lösung so aufzuschreiben unschick, weil man nicht erkennt, wo sie herkommt, aber von vor:

Wieviele Möglichkeiten gibt es, 4 Mannschaften für die erste Gruppe auszuwählen, nunja, gerade:

[mm] $\vektor{12 \\ 4}$ [/mm]

Wieviele Möglichkeiten gibt es für die 2. Gruppe? Naja, aus den restlichen 8 Mannschaften wieder 4 auswählen, also

[mm] $\vektor{8 \\ 4}$ [/mm]

Für die letzte Gruppe bleibt halt

[mm] $\vektor{4 \\ 4}$ [/mm]

Also ist die Lösung:

[mm] $\vektor{12 \\ 4} \vektor{8 \\ 4} \vektor{4 \\ 4} [/mm] = [mm] \vektor{12 \\ 4} \vektor{8 \\ 4}$ [/mm]

Nun gilt noch [mm] $\vektor{12 \\ 4} [/mm] = [mm] \vektor{12 \\ 8}$ [/mm] und du hast deine Lösung.

Dass die Gleichheit gilt, ist irgendwie logisch, denn anstatt die Mannschaften auszuwählen, die in die 1. Gruppe kommen, kann ich ja auch einfach die auswählen, die NICHT reinkommen.

MFG,
Gono.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]