matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieUrnenmodell
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Urnenmodell
Urnenmodell < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urnenmodell: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Sa 10.07.2010
Autor: Sachsen-Junge

Aufgabe
In einer Urne befinde sich 10 rote und 12 schwarze Kugeln. Zwei Personen entnehmen nacheinander zufällig eine Kugel ohne zuücklegen.
a) Wie groß ost die Wahrscheinlichkeit, dass die zweite erson eine rote Kugel zieht?
b) Die von der zweiten Person entnommene Kugel sei schwarz. Wie groß ist die Wahrscheinlichkeit, dass die von der ersten Person entnommene Kugel rot war.  

Hallo liebes Team.


Meine Idee:

a) Aus der Schule weiß ich noch, wie es mit dem Baumdiagramm geht.

P(das die zweite ein rote ist)= [mm] P(r,r)\cup P(s,r)=\frac{10}{22}*\frac{9}{21}+\frac{12}{22}*\frac{9}{21}=0.43 [/mm]

b) P(erste rot  | zweite schwarz )= [mm] \frac{P(r \cup s)}{P(s)} [/mm] da komme ich auf eine Wahrscheinlichkeit von 0,000005
Hier bin ich mir sicher das ich mich hier vertan habe.....

Ich bin für weitere Tipps dankbar.

        
Bezug
Urnenmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Sa 10.07.2010
Autor: Marcel

Hallo,

> In einer Urne befinde sich 10 rote und 12 schwarze Kugeln.
> Zwei Personen entnehmen nacheinander zufällig eine Kugel
> ohne zuücklegen.
> a) Wie groß ost die Wahrscheinlichkeit, dass die zweite
> erson eine rote Kugel zieht?
>  b) Die von der zweiten Person entnommene Kugel sei
> schwarz. Wie groß ist die Wahrscheinlichkeit, dass die von
> der ersten Person entnommene Kugel rot war.
> Hallo liebes Team.
>
>
> Meine Idee:
>  
> a) Aus der Schule weiß ich noch, wie es mit dem
> Baumdiagramm geht.
>  
> P(das die zweite ein rote ist)= [mm]P(r,r)\cup P(s,r)=\frac{10}{22}*\frac{9}{21}+\frac{12}{22}*\frac{9}{21}=0.43[/mm]
>  
> b) P(erste rot  | zweite schwarz )= [mm]\frac{P(r \cup s)}{P(s)}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> da komme ich auf eine Wahrscheinlichkeit von 0,000005
>  Hier bin ich mir sicher das ich mich hier vertan
> habe.....

die erste Aufgabe sollte fast okay sein, es müßte sich ergeben:
$$(\*)\;\;P((r,r))+P((s,r))=10/22*\;9/21\;+\;12/22*\;\blue{10/21}\,.$$

Zu dem $P((s,r))$:
Man hat ja zunächst 22 Kugeln, davon sind 12 schwarz und davon zieht man eine (schwarze). Dann verbleiben 21 Kugeln in der Urne, aber von diesen gibt es ja immer noch 10 rote, von denen man dann eine zieht. Die Wahrscheinlichkeit am Ende sollte dann $\approx 45,45$% betragen.

Bei der zweiten Aufgabe: Hier hast Du jedenfalls Fehler gemacht. Wenn Du mit bedingten Wahrscheinlichkeiten rechnest, dann steht doch irgendwo ein "Schnitt" oder ein "und", und keine "Vereinigung" bzw. "oder".

Es muss also (mit "1." bzw. "2." meine ich eigentlich "erste" bzw. "zweite Person zieht") lauten
$$P(\text{1. rot}|\text{2. schwarz})=P(\text{1. rot und 2. schwarz})/P(}\text{2. schwarz})$$
gerechnet werden.

Also erhält man (da die Wahrscheinleichkeit, dass die zweite eine schwarze ist, gerade die Gegenwahrscheinlichkeit davon ist, dass die zweite eine rote ist, können wir $(\*)$ benutzen):
$$P(\text{1. rot}|\text{2. schwarz})=\frac{10/22*9/21}{1-\big(10/22*\;9/21\;+\;12/22*\;10/21\big)}\,.$$

Ich erhalte dann $\approx 35,7$%.

Beste Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]