matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitUrbild muss in C0(X) sein
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Urbild muss in C0(X) sein
Urbild muss in C0(X) sein < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urbild muss in C0(X) sein: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 So 16.11.2014
Autor: drossel

Hi
X sei ein lokalkompakter Hausdorffraum, [mm] Y\subseteq [/mm] X abgeschlossen,
ich soll zeigen, dass die Abbildung
[mm] p:\{f\in C_0(X); f(x)=0\; \text{für alle}\; x\in Y\}\to C_0(X\setminus [/mm] Y)
[mm] f\mapsto f_{|X\setminus Y } [/mm] die Einschränkung von f
surjektiv ist.
Dh ist [mm] f\in C_0(X\setminus [/mm] Y), so definiere ich mir [mm] g(x):=\begin{cases} f(x), & \mbox{für }x\in X\setminus Y \\ 0, & \mbox{für } x\in Y \end{cases} [/mm]
Das soll mein Urbild für f sein. Dazu muss ich noch begründen, dass [mm] g\in C_0(X), [/mm] also g ist stetig und g verschwindet im unendlichen.
Die Stetigkeit von g auf den Teilbereichen [mm] X\setminus [/mm] Y und Y sind klar, aber g muss ja auch vom Übergang her stetig sein, also für [mm] x\in X\setminus [/mm] Y mit [mm] x\to x_0, x_0 [/mm] in Y müsste [mm] f(x)\to f(x_0) [/mm] gelten? Aber da Y abgeschlossen ist, kann das ja nicht sein oder? Kann mir dazu jemand helfen, was alles hier für die Stetigkeit gelten muss?
Gruß

        
Bezug
Urbild muss in C0(X) sein: Antwort
Status: (Antwort) fertig Status 
Datum: 07:49 Mo 17.11.2014
Autor: fred97

Zunächst sollten wir mal einiges klären:

1. Sei [mm] C_c(X) [/mm] die Menge aller reell- oder komplexwertigen Funktionen auf X mit kompaktem Träger. Für $f [mm] \in C_c(X)$ [/mm] ist

   [mm] ||f||_{\infty}:=\sup \{|f(x)|:x \in X\}. [/mm]

2. es ist [mm] C_0(X):=\overline{C_c(X)} [/mm] (Abschluss bezüglich [mm] ||*||_{\infty}) [/mm]

[mm] C_0(X) [/mm] ist vollständig bezüglich [mm] ||*||_{\infty} [/mm]


3. Es ist $f [mm] \in C_0(X)$ \gdw [/mm] für jedes c>0 ist [mm] \{x \in X: |f(x)| \ge c\} [/mm] kompakt.

Nun versuch Deine Beweis mal mit 3.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]