matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenUrbild bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Urbild bestimmen
Urbild bestimmen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urbild bestimmen: Tipp, Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:53 Sa 01.11.2014
Autor: Martin_Ph

Aufgabe
Gegeben sei die Funktion [mm] f:\IR \to \IR [/mm] mit D(f)= [mm] \IR [/mm] und der Abbildungsvorschrift: [mm] f(x)=x^{3}-3x+2 [/mm]

a)Zeichnen Sie die Funktion und bestimmen sie rechnerisch das Urbild der Bildmenge [mm] \IR_{0}^{+} [/mm]

b) Ist die Funktion injektiv,surjektiv oder bijektiv? Begründen Sie ihre Aussage

c) Bestimmen Sie D(f) so, dass die Funktion f mit obiger Abbildungsvorschrift bijektiv ist (keine Begründung nötig)

b) f(x) injektiv?
    Sei y=0: [mm] x^{3}-3x+2=0 \Rightarrow (x-1)^{2}(x+2)=0 \Rightarrow [/mm] x=1 [mm] \vee [/mm] x=2 [mm] \Rightarrow [/mm] f(x) ist nicht injektiv

Hier bin ich mir eig sicher dass es stimmen müsste, da für einen y-Wert 2 x-Werte gefunden wurden

surjektiv?
f(x) ist surjektiv, da jedem y aus der Bildmenge [mm] \IR [/mm] mindestens ein x zugeordnet werden kann. Dies habe ich allerdings nur aus dem Graphen abgelesen. Weiß hier leider nicht so recht wie ich das mathematisch aufschreiben soll

bijektiv?
Eine Abbildung heißt bijektiv, wenn Sie injektiv und surjektiv ist. Da f nicht injektiv ist [mm] \Rightarrow [/mm] f ist nicht bijektiv

c) [mm] D(f)=(-\infty,-1]\cup[-1,1]\cup[1,\infty) \Rightarrow [/mm] f ist bijektiv

a) Die Zeichnung hab ich natürlich hinbekommen.
Wie man allerdings das Urbild bestimmt bin ich mir leider nicht so im Klaren.
Hätte jetzt gesagt, da nur ungerade Potenzen ist das Urbild gleich dem Bild also auch wieder [mm] \IR_{0}^{+}. [/mm]


        
Bezug
Urbild bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Sa 01.11.2014
Autor: justdroppingby

Hi,

> Gegeben sei die Funktion [mm]f:\IR \to \IR[/mm] mit D(f)= [mm]\IR[/mm] und
> der Abbildungsvorschrift: [mm]f(x)=x^{3}-3x+2[/mm]
>  
> a)Zeichnen Sie die Funktion und bestimmen sie rechnerisch
> das Urbild der Bildmenge [mm]\IR_{0}^{+}[/mm]
>  
> b) Ist die Funktion injektiv,surjektiv oder bijektiv?
> Begründen Sie ihre Aussage
>  
> c) Bestimmen Sie D(f) so, dass die Funktion f mit obiger
> Abbildungsvorschrift bijektiv ist (keine Begründung
> nötig)
>  b) f(x) injektiv?
>      Sei y=0: [mm]x^{3}-3x+2=0 \Rightarrow (x-1)^{2}(x+2)=0 \Rightarrow[/mm]
> x=1 [mm]\vee[/mm] x=2 [mm]\Rightarrow[/mm] f(x) ist nicht injektiv
>  
> Hier bin ich mir eig sicher dass es stimmen müsste, da
> für einen y-Wert 2 x-Werte gefunden wurden

Richtig. f(1)=f(2)=0.

> surjektiv?
>  f(x) ist surjektiv, da jedem y aus der Bildmenge [mm]\IR[/mm]
> mindestens ein x zugeordnet werden kann. Dies habe ich
> allerdings nur aus dem Graphen abgelesen. Weiß hier leider
> nicht so recht wie ich das mathematisch aufschreiben soll

Das kommt darauf an, was ihr bereits gemacht habt. Am einfachsten ist es wohl mit dem Zwischenwertsatz. Ansonsten könnte man z.B. abschnittsweise Umkehrfkt. bilden.

> bijektiv?
>  Eine Abbildung heißt bijektiv, wenn Sie injektiv und
> surjektiv ist. Da f nicht injektiv ist [mm]\Rightarrow[/mm] f ist
> nicht bijektiv

Richtig.

> c) [mm]D(f)=(-\infty,-1]\cup[-1,1]\cup[1,\infty) \Rightarrow[/mm] f
> ist bijektiv

Dein D(f) ist die Menge der reellen Zahlen, das passt also nicht.

> a) Die Zeichnung hab ich natürlich hinbekommen.
>  Wie man allerdings das Urbild bestimmt bin ich mir leider
> nicht so im Klaren.
>  Hätte jetzt gesagt, da nur ungerade Potenzen ist das
> Urbild gleich dem Bild also auch wieder [mm]\IR_{0}^{+}.[/mm]

Wieso willst du ein Urbild bestimmen?


Bezug
                
Bezug
Urbild bestimmen: 2. Versuch
Status: (Frage) beantwortet Status 
Datum: 19:25 Sa 01.11.2014
Autor: Martin_Ph

Aufgabe
siehe erster Versuch

zu c)
[mm] D_{1}(f)=(-\infty,-1] \Rightarrow [/mm] f ist bijektiv
[mm] D_{2}(f)=[-1,1] \Rightarrow [/mm] f ist bijektiv
[mm] D_{3}(f)= [1,\infty) \Rightarrow [/mm] f ist bijektiv

zu b)

f surjektiv?

könnte ich sagen da [mm] \limes_{x\rightarrow\infty}f(x)= \infty [/mm] und [mm] \limes_{x\rightarrow -\infty}f(x)= -\infty [/mm] und f keine Definitionslücken in [mm] \IR [/mm] hat, ist f surjektiv

zu a)
Hier ist nach dem Urbild gefragt, deswegen die Frage wie man da vorzugehen hat, da ich hier nicht wirklich weiter weiß

Bezug
                        
Bezug
Urbild bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Sa 01.11.2014
Autor: justdroppingby


> siehe erster Versuch
>  zu c)
>  [mm]D_{1}(f)=(-\infty,-1] \Rightarrow[/mm] f ist bijektiv
>  [mm]D_{2}(f)=[-1,1] \Rightarrow[/mm] f ist bijektiv
>  [mm]D_{3}(f)= [1,\infty) \Rightarrow[/mm] f ist bijektiv
>  

Ja.

> zu b)
>
> f surjektiv?
>  
> könnte ich sagen da [mm]\limes_{x\rightarrow\infty}f(x)= \infty[/mm]
> und [mm]\limes_{x\rightarrow -\infty}f(x)= -\infty[/mm] und f keine
> Definitionslücken in [mm]\IR[/mm] hat, ist f surjektiv

Die Funktion ist stetig, darauf kommt es an.

> zu a)
>  Hier ist nach dem Urbild gefragt, deswegen die Frage wie
> man da vorzugehen hat, da ich hier nicht wirklich weiter
> weiß

Sorry, das hatte ich wohl überlesen.
Das Urbild kann man auch wieder an der Zeichnung ablesen, um einen Eindruck zu bekommen.
Rechnerisch sind es alle x mit [mm] $f(x)\geq [/mm] 0$.

Bezug
                                
Bezug
Urbild bestimmen: 3. Versuch
Status: (Frage) beantwortet Status 
Datum: 20:23 Sa 01.11.2014
Autor: Martin_Ph

Aufgabe
siehe 1. und 2. Versuch

zu a)

Bild: [mm] [0,\infty) [/mm]
Urbild: Sei y [mm] \in [0,\infty) [/mm]

Sei [mm] f(x)\ge0 \gdw x^{3}-3x+2\ge0 \gdw (x-1)^{2}(x+2)\ge0 \Rightarrow x\ge-2 \gdw [/mm] x [mm] \in [-2,\infty) [/mm]  // so müsste es doch dann passen oder?

zu b) surjektivität

habe ich da schon vollständig gezeigt dass es in ganz [mm] \IR [/mm] stetig ist? (is leider schon bisschen her...)
Theoretisch könnte ich doch auch behaupten dass Polynome immer stetig sind in ganz [mm] \IR [/mm]


Bezug
                                        
Bezug
Urbild bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Sa 01.11.2014
Autor: justdroppingby


> siehe 1. und 2. Versuch
>  zu a)
>  
> Bild: [mm][0,\infty)[/mm]
>  Urbild: Sei y [mm]\in [0,\infty)[/mm]
>  
> Sei [mm]f(x)\ge0 \gdw x^{3}-3x+2\ge0 \gdw (x-1)^{2}(x+2)\ge0 \Rightarrow x\ge-2 \gdw[/mm]
> x [mm]\in [-2,\infty)[/mm]  // so müsste es doch dann passen oder?

Ja.

> zu b) surjektivität
>  
> habe ich da schon vollständig gezeigt dass es in ganz [mm]\IR[/mm]
> stetig ist? (is leider schon bisschen her...)

Nein, das hast du noch gar nicht bewiesen.

>  Theoretisch könnte ich doch auch behaupten dass Polynome
> immer stetig sind in ganz [mm]\IR[/mm]

Das ist ja auch theoretisch und praktisch und sonstwie richtig.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]