matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeUntervektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Untervektorraum
Untervektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorraum: Ist das ein Untervektorraum?
Status: (Frage) beantwortet Status 
Datum: 11:52 Fr 11.03.2011
Autor: JigoroKano

Hey Leute,

also ich habe folgenden Frage: wir sollen prüfen ob es sich hierbei um einen UVR handelt:

[mm] K=\IR, V=\IR^{\IN} [/mm] , [mm] U=\{(x_{n})_{n\in\IN} :x_{k+2}=(x_{k})^{2} \forall k\in\IN\} [/mm]

Ich habe jetzt gesagt: Sei [mm] (1,1,1,1,...)\in [/mm] U , aber 2(1,1,1,1,...)=(2,2,2,2,...)

(2,2,2,2,...) dürfte doch eigentlich nicht mehr in U liegen, oder? Kann mir das jemanden erklären? Auch wenn es nicht mehr in U liegt, warum es nicht mehr in U liegt?

Danke schonma im vorraus :-)
Kano

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Fr 11.03.2011
Autor: kamaleonti

Hallo,
[mm] \qquad [/mm] [willkommenmr]

> Hey Leute,
>  
> also ich habe folgenden Frage: wir sollen prüfen ob es
> sich hierbei um einen UVR handelt:
>  
> [mm]K=\IR, V=\IR^{\IN}[/mm] , [mm]U=\{(x_{n})_{n\in\IN} :x_{k+2}=(x_{k})^{2} \forall k\in\IN\}[/mm]

in der Menge befinden sich reelle Folgen. Demnach scheint ihr mit [mm] \IR^\IN [/mm] den [mm] \IR [/mm] Vektorraum der reellen Folgen zu bezeichnen. Dieser Vektorraum ist nicht endlich dimensional.

>  
> Ich habe jetzt gesagt: Sei [mm](1,1,1,1,...)\in[/mm] U , aber
> 2(1,1,1,1,...)=(2,2,2,2,...)

Dann liegen diese von dir angegebenen Elemente weder in V noch in U. Siehe Mitteilung
Gib mal Folgen an. Zum Beispiel liegt [mm] x_k=1 [/mm] in U, aber warum nicht [mm] y_k=x_k+x_k=1+1=2? [/mm]
(Gib ein Beispiel, wo die Rekursion [mm] y_{k+2}=y_k^2 [/mm] nicht erfüllt ist)

>  
> (2,2,2,2,...) dürfte doch eigentlich nicht mehr in U
> liegen, oder? Kann mir das jemanden erklären? Auch wenn es
> nicht mehr in U liegt, warum es nicht mehr in U liegt?
>  
> Danke schonma im vorraus :-)
>  Kano
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

Bezug
                
Bezug
Untervektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 Fr 11.03.2011
Autor: JigoroKano

Hey,

naja warum kann ich denn nicht sagen, dass [mm] (1,1,1,1,...)\in [/mm] U ist. Es steht doch nirgens geschrieben, dass es nicht so ist.

Und naja mein Gegenbeispiel ist: wenn ich die Abgeschlossenheit bzgl. der Skalarmultiplikation mir angucke, dann müsste meine Aussage doch stimmen, denn:

2*(1,1,1,1,...) = (2,2,2,2,...) [mm] \not= (1,1,1,1,....)^{2} [/mm] was ja der vorraussetzung widerspricht. und somt ist es meiner Meinung nach kein UVR..

LG
Kano

Bezug
                        
Bezug
Untervektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:40 Fr 11.03.2011
Autor: kamaleonti

Hallo,
> Hey,
>  
> naja warum kann ich denn nicht sagen, dass [mm](1,1,1,1,...)\in[/mm]
> U ist. Es steht doch nirgens geschrieben, dass es nicht so
> ist.

Ich hätte verdeutlichen sollen, dass es mir um die Schreibweise für Folgen geht. Die beiden Folgen, die ich angegeben habe, entsprechen deinen, nur wird die Punkteschreibweise umgangen.

Gruß

Bezug
                        
Bezug
Untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Fr 11.03.2011
Autor: angela.h.b.


> Hey,
>  
> naja warum kann ich denn nicht sagen, dass [mm](1,1,1,1,...)\in[/mm]
> U ist. Es steht doch nirgens geschrieben, dass es nicht so
> ist.

Hallo,

diese Folge ist in U, und Du solltest Dir überlegen, warum das so ist.
Daß nirgends geschrieben steht, daß sie nicht drin ist, ist ja ein recht dünnes Argument.

Schauen wie uns mal die Folgen an, die in U sind. Sie sind von einer bestimmten Machart: es ist jedes Folgenglied das Quadrat des Folgengliedes, welches zwei vor ihm kommt.
Ein Beispiel einer Folge aus U wäre also (5,-2,25,4,625,16, [mm] 5^8, 2^8, [/mm] ...).
Also dürfte klar sein, daß oben die Folge (1,1,1,...) in U ist.

>  
> Und naja mein Gegenbeispiel ist: wenn ich die
> Abgeschlossenheit bzgl. der Skalarmultiplikation mir
> angucke, dann müsste meine Aussage doch stimmen, denn:
>  
> 2*(1,1,1,1,...) = (2,2,2,2,...) [mm]\not= (1,1,1,1,....)^{2}[/mm]
> was ja der vorraussetzung widerspricht. und somt ist es
> meiner Meinung nach kein UVR..

Ich bin mit Dir einer Meinung, daß U kein UVR des [mm] \IR^{\IN} [/mm] ist.
Deine Begründung "(2,2,2,2,...) [mm] $\not= (1,1,1,1,....)^{2}$" [/mm] ist aber falsch.

Richtig wäre dies:
da [mm] (1,1,1,...)\in [/mm] U, muß, wenn U ein UVR ist, auch [mm] (2,2,2,...)\in [/mm] U sein.
Dies ist nicht der Fall, denn ???
(Wenn Du inzwischen verstanden hast, wie die Folgen in U gestrickt sind, wird Dir die Begründung jetzt leichtfallen.)

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]