matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraUntervektorraum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Untervektorraum
Untervektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 Mi 29.11.2006
Autor: solero

Aufgabe
Es sei K ein Körper und V ein K-Vektorraum mit den Untervekorräumen U und W. Zeigen Sie: U [mm] \cup [/mm] W ist genau dann ein Untervektorraum von V, wenn eine der folgenden Bedingungen gilt:
i.) U [mm] \subset [/mm] W
ii.) W [mm] \subset [/mm] U

hallo zusammen...

also wir sind mal wieder sprachlos...!! diese aufgabe kann doch wohl nicht soo schwer sein oder??!!! aber irgendwie checken wir trotzdem nicht wie wir auf den ansatz kommen sollen!!!! ich meine die folgenden axiomen für die untervektoren konnen wir nachvollziehen, aber vor unseren augen sind diese nur definitionen, wie sollen wir das denn hierfür verwenden??!!!

kann uns da jemad einen tipp gebeen??; wäre echt toll!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
mfg solero cru



        
Bezug
Untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Mi 29.11.2006
Autor: DaMenge

Hi,

also du musst doch zeigen, dass :
es gilt i) oder ii) [mm] $\gdw U\cup [/mm] V$ ist UVR
die hinrichtung ist doch trivial, oder?

und für die rückrichtung würde ich per widerspruch argumentieren:
sei $ [mm] U\cup [/mm] V$ ein UVR aber es gelte weder i) noch ii) , also gibt es einen vektor u, der in U aber nicht in V vorkommt und einen Vektor v der in V aber nicht in U vorkommt.
u und v kommen also auch in [mm] $U\cup [/mm] V$ vor und weil dies ein UVR ist, müsste auch (u+v) in [mm] $U\cup [/mm] V$ liegen, aber kann das sein?!?

viele Grüße
DaMenge

Bezug
                
Bezug
Untervektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Mi 29.11.2006
Autor: solero

erstmal vielen dank für deine antwort!!!

die hinrichtung könnten wir noch nachvollziehen, aber ist die rückrichtung verstehe ich nicht ganz, ich meine das klingt so widersprüchlich. wenn U U W ist kann doch nicht " weder i.) und ii.) gelten... kannst du das evtl. bitte nochmal erklären was du genau damit meinst??

danke!

solero cru

Bezug
                        
Bezug
Untervektorraum: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 23:02 Mi 29.11.2006
Autor: leduart

Hallo
Der Satz ist fuer die Vereinigungsmenge denk ich einfach falsch. nimm U aufgespannt durch (1,0,0) und (0,1,0)
W durch (0,0,1) die Vereinigung waere aufgespannt von allen 3 en, also etwa der [mm] R^3. [/mm] also wieder ein Vektorraum.
Gruss leduart

Bezug
                                
Bezug
Untervektorraum: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 00:53 Do 30.11.2006
Autor: DaMenge

hi,

die vereinigung deiner beiden mengen ist nicht deren erzeugnis, sondern eben nur die vereinigung.

du hast eine ebene und eine gerade als UVR gewählt, deren vereinigung (mengentheoretisch gesehen) ist nicht der gesamte R³, sondern eben nur eine Gerade und eine Ebene zusammengepackt.

der widerspruch ensteht, wenn man sich in deinem beispiel mal die vektoren (1,0,0) und (0,0,1) anschaut, beide liegen in der vereinigung, aber ihre summe liegt nicht in der vereinigung, also ist die vereinigung kein UVR..

nächtliche grüße
DaMenge

Bezug
                        
Bezug
Untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 01:00 Do 30.11.2006
Autor: DaMenge

Hi,

ich hatte die Rückrichtung als Widerspruchsbeweis vorgeschlagen, das bedeutet : wenn man zeigen will : aus A folgt B, also [mm] $A\Rightarrow [/mm] B$

man weiß also, dass A gilt.
angenommen, es würde (nicht B) gelten, also [mm] $\neg [/mm] B$, wenn man nun einen Widerspruch dazu erzeugen kann, dass A gelten muss, hat man damit bewiesen, dass B gelten muss, solnage A schon gilt.
(denn die negation von B impliziert die negation von A)

also bei deinem beispiel:
Wenn [mm] $U\cup [/mm] V$ ein UVR ist (das ist unser A).
angenommen, es würde weder i) noch ii) gelten (das ist unser [mm] $\neg [/mm] B$)
jetzt kann man wie oben angedeutet einen Widerspruch dazu bekommen, dass U vereinigt mit V schon ein UVR ist, also kann nicht "weder i) noch ii)" gelten, denn dies war unsere einzige annahme...

soweit klar, oder ist das Konzept eines Widerspruchbeweises nicht wirklich klar?

viele Grüße
DaMenge

Bezug
                                
Bezug
Untervektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:32 Do 30.11.2006
Autor: solero

hallo und vielen dank für eure mühe..!!

klingt zwar logisch, was du oben mit dem widerspruch meinst, allerdings sind wir irgendwie nicht dafür geeignet das umzusetzen!! vielleicht liegt das daran weil wir sowas noch nicht vorher gehabt haben... naja wir versuchens mal nochmal...


mfg solero cru

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]