matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeUntervektorräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Untervektorräume
Untervektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Mo 10.12.2007
Autor: Albtalrobin

Aufgabe
Sei K ein Körper und [mm] U_{1} [/mm] bzw. [mm] U_{2} [/mm] die folgenden Untervektorräume des [mm] K^{3} [/mm] :

[mm] U_{1} [/mm] := { [mm] (x_{1},x_{2},x_{3}) \in K^{3} [/mm] | [mm] x_{1}+x_{2}+x_{3} [/mm] = 0 }
[mm] U_{2} [/mm] := K * (1,1,1) := { t * (1,1,1) | t [mm] \in [/mm] K }

(a) Sei nun K := [mm] \IR. [/mm] Zeigen sie: Für jeden Vektor v [mm] \in \IR^{3} [/mm] gibt es ein t [mm] \in \IR, [/mm] so dass v-t*(1,1,1) [mm] \in U_{1} [/mm]
(b) Sei K := [mm] \IR. [/mm] Zeigen Sie, dass [mm] U_{1}+U_{2} [/mm] = [mm] \IR^{3} [/mm]
(c) Sei nun K := [mm] \IF_{3}. [/mm] Gilt auch jetzt [mm] U_{1}+U_{2} [/mm] = [mm] \IF_{3}^{3}? [/mm]

zur (a): Ich versteh zwar, dass es soein t gibt, aber wie soll ich das bitte beweisen???
zu (b)  HÄ??? ;-)
zu (c) Ich weis, dass das nicht stimmt...aber wie ist die begründung?

        
Bezug
Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 Mo 10.12.2007
Autor: angela.h.b.


> Sei K ein Körper und [mm]U_{1}[/mm] bzw. [mm]U_{2}[/mm] die folgenden
> Untervektorräume des [mm]K^{3}[/mm] :
>  
> [mm]U_{1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= { [mm](x_{1},x_{2},x_{3}) \in K^{3}[/mm] |

> [mm]x_{1}+x_{2}+x_{3}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= 0 }

>  [mm]U_{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= K * (1,1,1) := { t * (1,1,1) | t [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

K }

>  
> (a) Sei nun K := [mm]\IR.[/mm] Zeigen sie: Für jeden Vektor v [mm]\in \IR^{3}[/mm]
> gibt es ein t [mm]\in \IR,[/mm] so dass v-t*(1,1,1) [mm]\in U_{1}[/mm]
>  (b)
> Sei K := [mm]\IR.[/mm] Zeigen Sie, dass [mm]U_{1}+U_{2}[/mm] = [mm]\IR^{3}[/mm]
>  (c) Sei nun K := [mm]\IF_{3}.[/mm] Gilt auch jetzt [mm]U_{1}+U_{2}[/mm] =
> [mm]\IF_{3}^{3}?[/mm]
>  zur (a): Ich versteh zwar, dass es soein t gibt, aber wie
> soll ich das bitte beweisen???

Hallo,

in dem Fall wäre es sinnvoll, würdest Du zunächst mal "einfach so aufschreiben" warum das gilt.
Gelegentlich ist so etwas von einem Beweis dann ja gar nicht so weit entfernt, ein [url=/codex#loesungsansaetze] wäre es allemal.

>  zu (b)  HÄ??? ;-)

Warauf bezieht sich Dein HÄ???
Glaubst Du die Aussage nicht, oder weißt Du nicht, was [mm] U_{1}+U_{2} [/mm] sein soll? (Nachschlagen!)

>  zu (c) Ich weis, dass das nicht stimmt...aber wie ist die
> begründung?

Irgendeine Begründung mußt Du doch haben, wenn Du weißt, daß es nicht stimmt.
Wie kommst Du darauf, was denkst Du Dir dazu?

Wenn man Dir helfen soll, müßtest Du schon etwas auskunftsfreudiger sein, so weiß man ja gar nicht, wo es hakt.

Gruß v. Angela

Bezug
                
Bezug
Untervektorräume: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:45 Di 11.12.2007
Autor: Albtalrobin

Kann mir jemand die Multiplikationstabelle und die Additionstabelle des Körpers [mm] F_{3} [/mm] verraten??

Bezug
                        
Bezug
Untervektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:45 Di 11.12.2007
Autor: Albtalrobin

ich habs jetzt ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]