matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraUntervektorräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Untervektorräume
Untervektorräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorräume: Problem!
Status: (Frage) beantwortet Status 
Datum: 19:19 Do 21.06.2007
Autor: TBS

Aufgabe
Geben Sie mit ausreichender Begründung an, welche der folgenden Mengen Untervektorräume des Vektorraums W = { f | f : R -> R ist eine Abbildung } sind.

b) Ub = { f | f ist unstetig }
e) Ue = { f | f(1) = f(2) }
g) Ug = { f | f(1) = f(2) + 2 }

Hallo,

habe bei den o.g. Teilaufgaben enorme Probleme, ich weiß nicht wie ich sie angehen soll!
Kann sie mir vlt. jemand vorrechnen?
Versuche es schon seit geraumer Zeit! Vielen danke schonmal im Vorraus!

Gruß

Julian

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Do 21.06.2007
Autor: schachuzipus

Hallo Julian,

du musst die Unterraumkriterien nachprüfen, das sind glaube ich 3 an der Zahl:

(1) [mm] $U_i\ne\emptyset$ [/mm]

(2) [mm] $\forall f,g\in U_i$ [/mm] : [mm] $f+g\in U_i$ [/mm]

(3) [mm] $\forall\lambda\in\IR\forall f\in U_i$ [/mm] : [mm] $\lambda f\in U_i$ [/mm]

insbesondere der Nullvektor 0

(das ist hier die Nullabbildung [mm] $0:\IR\to\IR, x\mapsto [/mm] 0$ [mm] $\forall x\in\IR$) [/mm]

in jedem VR, also auch in jedem UVR

Ist die in [mm] U_b? [/mm]

bei [mm] U_e [/mm] und [mm] U_g [/mm] solltest du mal versuchen, die Kriterien zu zeigen.

Das sollte bei [mm] U_e [/mm] gut klappen, bei [mm] U_g [/mm] sollte was schiefgehen...

Probier's mal. Wenn du nicht weiter kommst, frag nochmal nach...


LG

schachuzipus



Bezug
                
Bezug
Untervektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Do 21.06.2007
Autor: TBS

Die drei zu beweisenden Eigenschaften sind mir bekannt ich konnte auch schon andere Aufgaben lösen bis auf diese eben.

a)
1.) in Ub ist der Nullvektor enthalten oder nicht?
2.) Aber lim (h(x)) = lim((f+g)(x))
                    = lim(f(x)) + lim(g(x))
    müsste fehlschlagen, da der Grenzwert nicht eindeutig ist, oder? Aber wie schreibe ich das formal hin?

b)
1.) Hier müsste auch der Nullvektor enthalten sein.
2.) und 3.) Auch hier weiß ich nicht wie ich es korrekt aufschreiben soll. Da ich nicht die anderen Werte kenne!

Hoffe mir kann jemand eine Lösung oder zumindest Teillösung posten!

Danke

Gruß
Julian

Bezug
                        
Bezug
Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Do 21.06.2007
Autor: schachuzipus

Hallo,

wenn der Nullvektor, also die Nullabbildung in [mm] U_b [/mm] wäre, so müsste sie unstetig sein, aber sie ist doch konstant 0 und damit stetig!!

zu [mm] U_e [/mm]

Nimm dir zwei Funktionen f und [mm] g\in U_e [/mm] her, zz ist dann, dass f+g auch in [mm] U_e [/mm] ist, dass also gilt (f+g)(1)=(f+g)(2)

Es ist (f+g)(1)=f(1)+g(1) das ist die Definition der Addition von Funktionen

=f(2)+g(2) da f,g [mm] \in U_e [/mm]

=(f+g)(2) wieder Def + für Fkten

[mm] \in U_e [/mm]

zack

nun noch die Abgeschlossenheit bzgl skalarer Multiplikation


genauso kannste das für [mm] U_g [/mm] ansetzen, dann wirste sehen, dass

[mm] (f+g)(1)=.....\ne [/mm] (f+g)(2)+2 ist  oder  argumentiere wieder mit der 0:

0(1)=0=0(2), also.....


LG

schachuzipus

Bezug
                                
Bezug
Untervektorräume: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 20:51 Do 21.06.2007
Autor: TBS

Danke für die schnelle Antwort!
Kann ich bei der Ue mit der skalaren Multiplikation auch den Trick mit 0 machen:
[mm] \lambda \odot [/mm] 0(1) = 0 = [mm] 0(\lambda [/mm] * 2) ???

Kann man das mit 0 immer machen, z.B. bei dieser Aufgabe:
U = {f | -f(x) = f(-x)}
=>
1.) Nullvektor ist Element von U
2.) -0(x) = 0 = 0(-x)
3.) [mm] \lambda \odot [/mm] -0(x) = 0 = [mm] 0(\lambda [/mm] * (-x))

?

Grüße

Bezug
                                
Bezug
Untervektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:04 Do 21.06.2007
Autor: schachuzipus

Hi nochmal,

ich weiß gerade nicht genau, was du mit Trick meinst,

für die Abgeschlossenheit bzgl skalarer Multiplikation musst du zeigen, dass für [mm] \underline{jeden} [/mm] Skalar [mm] \lambda [/mm]  und für [mm] \underline{jede} [/mm] Abbildung f [mm] \in U_e [/mm] auch [mm] \lambda\cdot{} [/mm] f [mm] \in U_e [/mm] ist

Das muss dann natürlich auch für die Nullfunktion gelten

Ich nenne die Nullfunktion mal n und die reelle Zahl Null nenne ich 0, dann ist das klarer:

[mm] (\lambda f)(1)=\lambda f(1)=\lambda f(2)=(\lambda [/mm] f)(2)

also [mm] \lambda f\in U_e [/mm]

für die Nullfunktion: [mm] (\lambda n)(1)=\lambda n(1)=\lambda 0=\lambda n(2)=(\lambda [/mm] n)(2)

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]