matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenUntersuchung einer Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Rationale Funktionen" - Untersuchung einer Funktion
Untersuchung einer Funktion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchung einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Di 25.10.2011
Autor: Fee

Aufgabe
Nenne die Definitions-und Wertemenge, berechne den Grenzwert( x strebt gegen Unendlich und minus Unendlich ) . Wie ist die Monotonie des Graphen ?
Schreibe deine Vermutung bezüglich des Verhalten des Graphen an den nicht definierten Stellen auf.

a) f(x)=x/(X² - 4)

Hallo Leute ! ;)

Mein Mathelehrer hat uns die Aufgabe diktiert. Was ist nochmal die Wertemenge,wie lautet sie dann hier??? Und bei den Grenzwerten geht bei mir nichts mehr... Was ist der Unterschied zwischen +Unendlich und -Unendlich ?

Bei der Untersuchung der nicht definierten Stellen wieß ich , das man zuerst die Urbildfolge und dann die Bildfolge bilden muss. Aber was kommt dann???

Könnt Ihr mir helfen ?

Eure Fee



        
Bezug
Untersuchung einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Di 25.10.2011
Autor: schachuzipus

Hallo Fee,


> Nenne die Definitions-und Wertemenge, berechne den
> Grenzwert( x strebt gegen Unendlich und minus Unendlich ) .
> Wie ist die Monotonie des Graphen ?
>  Schreibe deine Vermutung bezüglich des Verhalten des
> Graphen an den nicht definierten Stellen auf.
>  
> a) f(x)=x/(X² - 4)
>  Hallo Leute ! ;)
>  
> Mein Mathelehrer hat uns die Aufgabe diktiert. Was ist
> nochmal die Wertemenge,wie lautet sie dann hier??? Und bei
> den Grenzwerten geht bei mir nichts mehr... Was ist der
> Unterschied zwischen +Unendlich und -Unendlich ?
>  
> Bei der Untersuchung der nicht definierten Stellen wieß
> ich , das man zuerst die Urbildfolge und dann die Bildfolge
> bilden muss. Aber was kommt dann???
>  
> Könnt Ihr mir helfen ?

Das ist sehr wirr, du solltest deine Gedanken mal sortieren und deine Frage(n) strukuriert aufschreiben ...

Fangen wir mal an:

Definitionsmenge: Das sind alle reellen Zahlen, für die der Ausdruck [mm]f(x)=\frac{x}{x^2-4}[/mm] definiert ist.

Was ist bei Brüchen nicht erlaubt? Klar, durch 0 teilen, du musst also untersuchen, für welche [mm]x\in\IR[/mm] der Nenner 0 wird und diese x herausnehmen.

Das sind die sog. Polstellen.

Für den Wertebereich untersuche das Verhalten von [mm]f(x)[/mm] für [mm]x\to \text{Polstelle}[/mm]

Für die Monotonie schaue mal in deine Unterlagen, wie Monotonie und 1.Ableitung zusammenhängen.

Für die Grenzwerte von [mm]f(x)[/mm] für [mm]x\to\pm\infty[/mm] beachte, dass der Nennergrad (2 von [mm]x^2[/mm]) höher als der Zählergrad (1 von [mm]x=x^1[/mm]) ist.

Wenn dir das nichts sagt, klammere im Nenner mal [mm]x[/mm] aus und kürze es gegen das x aus dem Zähler weg und schaue dann, was für [mm]x\to\pm\inifty[/mm] passiert.


>  
> Eure Fee
>  
>  

Gruß

schachuzipus


Bezug
                
Bezug
Untersuchung einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Di 25.10.2011
Autor: Fee

Danke, dass du mir hilfst !!!

Es hat geklappt !

Hast du auch eine Idee , wie man das mit der Untersuchung des Verhaltens des Graphen an den nicht definierten Stellen anstellt ?

Bezug
                        
Bezug
Untersuchung einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Di 25.10.2011
Autor: schachuzipus

Hallo nochmal,




> Danke, dass du mir hilfst !!!
>  
> Es hat geklappt !
>  
> Hast du auch eine Idee , wie man das mit der Untersuchung
> des Verhaltens des Graphen an den nicht definierten Stellen
> anstellt ?

Ja, habe ich, aber sage du erstmal, welche Stellen das denn sind ...

Gruß

schachuzipus


Bezug
                                
Bezug
Untersuchung einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:35 Di 25.10.2011
Autor: Fee

, ich würde sagenen, dass das 2 und -2 sind.

Bezug
                        
Bezug
Untersuchung einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Di 25.10.2011
Autor: Steffi21

Hallo, die Stellen [mm] x_1=-2 [/mm] und [mm] x_2=2 [/mm] hast du ja nun erkannt, untersuche nun die Grenzwerte für x gegen -2 bzw. 2 von links bzw. rechts, wenn du die Grenzwerte nicht sofort erkennst, so setze für den Grenzwert x gegen -2 von links doch mal die Zahlen -3; -2,5; -2,1; -2,01; -2,001 ein, analog die anderen Grenzwerte

Steffi

Bezug
                                
Bezug
Untersuchung einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Di 25.10.2011
Autor: Fee

Ws bringt mir das ? (Danke, dass du mir hilfst )

Bezug
                                        
Bezug
Untersuchung einer Funktion: Wertebereich
Status: (Antwort) fertig Status 
Datum: 18:15 Di 25.10.2011
Autor: Infinit

Hallo fee,
damit bekommst Du eine Aussage über den Wertebereich in der Nähe dieser Polstellen, also der Nullstellen des Nenners.
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]