matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUntersuchung einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Untersuchung einer Funktion
Untersuchung einer Funktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchung einer Funktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:20 Di 27.06.2006
Autor: alexus

Aufgabe
1.1 Die Funktion f: [mm] \IR-> \IR [/mm] sei definiert durch
[mm] f(x)=\begin{cases} 1/q, & \mbox{falls x e Q mit x=p/q, p,q e N, ggT(p,q)=1} \\ 1, & \mbox{falls x=0}\\0, & \mbox{sonst} \end{cases} [/mm]

Zeigen Sie, dass f(x) in jedem Punkt x  [mm] \in \IQ [/mm] unstetig ist, und dass f(x) in jedem Punkt x [mm] \in \IR [/mm] \ [mm] \IQ [/mm] stetig ist.

1.2 Es sei f:R->R eine monotone Funktion. Beweisen Sie, dass es höchstens abzählbar viele Punkte in R gibt, in welchen die Funktion f unstetig ist.

1.3 Entscheiden Sie, welche der folgenden Aussagen richtig bzw. falsch sind und begründen Sie ihre Antwort ausführlich:

(a) Ist f:[0, [mm] \infty[->R [/mm] gleichmäßig stetig, so existiert  [mm] \limes_{x\rightarrow\infty}f(x) [/mm]
(b) Ist f:[0, [mm] \infty[->R [/mm] stetig und existiert  [mm] \limes_{x\rightarrow\infty}f(x), [/mm] so ist f gleichmäßig stetig auf [0, [mm] \infty[. [/mm]

1.4 Sei M  [mm] \subset [/mm] R eine beschränkte Teilmenge von R und sei f:M->R gleichmäßig stetig auf M. Zeigen Sie, dass f(M) beschränkt ist.

Also die 1.1, dass f(x) in jedem Punkt x e Q unstetig ist hab ich mir an dem Beispiel 1/5 überlegt, da f(1/5)=1/5, jedoch  [mm] \limes_{x\rightarrow\ 1/5}=0, [/mm] da ja beim sich Nähern an 1/5 die Nenner der Brüche immer größer werden, z.b.
1000/5001. Es ist halt nur ein Beispiel und ich denke nicht, dass das als Beweis genügt.
Dass f(x) in allen irationalen Zahlen stetig ist, hab ich dadurch gezeigt, dass ja
f(ir) = 0 und [mm] \limes_{x\rightarrow\ ir}=0, [/mm] siehe oben. Weiß aber auch nicht, ob das so ganz astrein ist.
Bei 1.2, 1.3, 1.4 hab ich keinen Schimmer, wie ich da rangehn soll.

        
Bezug
Untersuchung einer Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 29.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]