matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUntersuchung auf Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Untersuchung auf Konvergenz
Untersuchung auf Konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchung auf Konvergenz: Frage
Status: (Frage) beantwortet Status 
Datum: 11:27 So 07.11.2004
Autor: Wanja

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo! Ich habe ein Problem mit meinen Übungsaufgaben. Ich soll diese Folgen auf Konvergenz untersuchen:

(a) [mm] \bruch{1-(1-1/n)^5}{1-(1-1/n)^2} [/mm]

(b) produkt von k=2 bis n: [mm] 1-\bruch{1}{k^2} [/mm]

Wenn ich den Grenzwert finde, wäre das dann schon eine Untersuchung auf Konvergenz oder gehört da mehr dazu? Der Taschenrechner sagt bei (a) dass der Grenzwert bei etwa 2,5 liegen muss, aber darauf bin ich rechnerisch nicht gekommen. Ich habe nur lauter Nullfolgen erhalten. Bei (b) weiß ich gar nicht was ich machen soll, denn eine Folge mit Produktzeichen habe ich noch nie untersucht. Kann mir jemand helfen???

        
Bezug
Untersuchung auf Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 So 07.11.2004
Autor: ChryZ

zu (b)

Versuch mal   1 - [mm] \bruch {1}{k^2} [/mm]   auf einen Nenner zu bringen und schreib dann mal die ersten paar Terme der Potenz hin

Bezug
                
Bezug
Untersuchung auf Konvergenz: Frage noch nicht gelöst
Status: (Frage) beantwortet Status 
Datum: 14:57 So 07.11.2004
Autor: Wanja

Ich habe die ersten Terme dieser Potenz schon einmal hingeschrieben, an dieser Stelle bin ich dann nicht mehr weitergekommen. Kann mir jemand bei Aufgabe (a) bzw. (b) weiterhelfen????

Bezug
                        
Bezug
Untersuchung auf Konvergenz: Konvergenz (a)
Status: (Antwort) fertig Status 
Datum: 15:52 So 07.11.2004
Autor: Clemens

Hallo Wanja!

Zuerst würde ich substituieren:
u = 1 - [mm] \bruch{1}{n} [/mm]
und dann schreiben:
[mm] \limes_{n\rightarrow\infty} \bruch{1- (1 - \bruch{1}{n})^{5}}{1 - (1 - \bruch{1}{n})^{2}} [/mm] = [mm] \limes_{u\rightarrow 1} \bruch{1 - u^{5}}{1 - u^{2}} [/mm]
Nun bedienen wir uns der Identitäten:
1 - [mm] u^{5} [/mm] = (1 - u)(1 + u + [mm] u^{2} [/mm] + [mm] u^{3} [/mm] + [mm] u^{4}) [/mm]
1 - [mm] u^{2} [/mm] = (1 - u)(1 + u)
und erhalten damit:
= [mm] \limes_{u\rightarrow 1} \bruch{1 + u + u^{2} + u^{3} +u^{4}}{1 + u} [/mm] = [mm] \bruch{5}{2} [/mm] = 2.5

Gruß Clemens

Bezug
                                
Bezug
Untersuchung auf Konvergenz: Dankeschöön!!!!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:05 So 07.11.2004
Autor: Wanja

Hey, die Idee mit den Substituieren war gut. Vielen Dank, dass du dir Zeit für mein Problem genommen hast. 1000 Küsse, Wanja!!!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]