matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenUntersuchung auf Asymptoten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Untersuchung auf Asymptoten
Untersuchung auf Asymptoten < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchung auf Asymptoten: Vorgehen?
Status: (Frage) beantwortet Status 
Datum: 18:33 Di 28.03.2006
Autor: janty

Aufgabe 1
Untersuchen Sie f(x) auf Asymptoten und Polstellen:

f(x) =  [mm] \bruch{8x^{4} - x^{7} + 13}{1 - x^{2}} [/mm]

Aufgabe 2
Untersuchen Sie h(x) auf Asymptoten und Polstellen:

h(x) =  [mm] \bruch{2x^{3} - 1}{3x + 4x^{2} - 7} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
Ich hab keine Ahnung, wie ich bei den obigen und ähnlichen Funktionen vorgehen soll. Ich dachte eigentlich man müsste eine Polynomdivision machen, aber ich wüsste bei den Funktionen nicht, wie...

Oder überseh ich nur irgendwas?? Ein Ansatz oder Rat wäre nett :)

LG
Laura


        
Bezug
Untersuchung auf Asymptoten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Di 28.03.2006
Autor: Zwerglein

Hi, janty,

> Untersuchen Sie f(x) auf Asymptoten und Polstellen:
>  
> f(x) =  [mm]\bruch{8x^{4} - x^{7} + 13}{1 - x^{2}}[/mm]
>  Untersuchen
> Sie h(x) auf Asymptoten und Polstellen:
>  
> h(x) =  [mm]\bruch{2x^{3} - 1}{3x + 4x^{2} - 7}[/mm]

>  Ich hab keine Ahnung, wie ich bei den obigen und ähnlichen
> Funktionen vorgehen soll. Ich dachte eigentlich man müsste
> eine Polynomdivision machen, aber ich wüsste bei den
> Funktionen nicht, wie...

Ein bissl musst Du uns schon entgegenkommen: Lösungsversuche sollten schon "mitgeliefert" werden.

Aber ein wenig helf' ich Dir schon mal:
(1) Zu den Asymptoten gehören auch die senkrechten, also die "Pole".
Demnach setzt Du zuerst mal den jeweiligen Nenner=0 und "schaust nach", ob an diesen Stellen auch der Zähler=0 wird:
- Wenn nein, dann sind diese Stellen Pole,
- wenn ja, dann musst Du kürzen (z.B. mit Hilfe einer Polynomdivision): die zugehörige Stelle ist dann halt nur stetig behebbare Definitionslücke; keine Asymptote.
(2) Schiefe Asymptoten (die Du mit Polynomdivision "Zähler geteilt durch Nenner") berechnen kannst, gibt es nur, wenn der Zählergrad um genau 1 größer ist als der Nennergrad (also in Deinem zweiten Beispiel); ist der Zählergrad noch größer (wie in Deinem ersten Beispiel) kannst Du zwar auch Polynomdivision machen
(hier: [mm] (-x^{7}+8x^{4}+13):(-x^{2}+1).), [/mm]
aber das Ergebnis liefert dann keine "Asymptote" (also Gerade!), sondern nur eine "Asymptotenfunktion" höheren Grades.

Und nun: Auf geht's!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]