matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungUntersuchung Definitionslücke
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Untersuchung Definitionslücke
Untersuchung Definitionslücke < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchung Definitionslücke: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:28 Fr 26.05.2006
Autor: elvira

Aufgabe
[mm] f(x) = \bruch {4x-4}{3x+3} [/mm]
Untersuchen Sie das Verhalten der Funktion f in der Umgebung der Definitionslücke und geben Sie die Art der Definitionslücke an.

Hallo Ihr Lieben,

meine Vorstellungskraft im Unendlichen ist leider äußerst endlich...

Bei dieser schlichten Aufgabe würd ich so vorgehen:
[mm] \limes_{x\rightarrow\ -1 } \bruch {4x-4}{3x+3} [/mm]

Rechter Grenzwert (-1+h)
[mm] \limes_{h\rightarrow\ 0 } \bruch {4(-1+h)-4}{3(-1+h)+3} [/mm]
aufgelöst:
[mm] \limes_{h\rightarrow\ 0 } \bruch {-8+4h}{3h} [/mm]
jetzt hab ich alles durch h geteilt und was bleibt ist:
[mm] \limes_{h\rightarrow\ 0 } \bruch {4-\bruch{8}{h}}{3} [/mm]

und hier kann ich nicht mehr weiter:
- ich seh, dass -1 ein Pol ist, also muss unendlich raus kommen
- und ich weiß auch, dass wenn der Nenner eines Bruchs (wie hier 8 geteilt durch h) gegen 0 geht, dass der Wert dann gegen unendlich geht
- meine konkrete Frage: geht der Wert nach positiv oder negativ unendlich??
- durch probieren komm ich auf negativ unendlich, aber man soll dies "so" sehen können, ich seh es leider nicht...

Das gleiche Problem beim linken Grenzwert (wegen Vollständigkeit):
Linker Grenzwert (-1-h)
[mm] \limes_{h\rightarrow\ 0 } \bruch {4(-1-h)-4}{3(-1-h)-3} [/mm]
aufgelöst:
[mm] \limes_{h\rightarrow\ 0 } \bruch {-8-4h}{-3h} [/mm]
jetzt hab ich alles durch h geteilt und was bleibt ist:
[mm] \limes_{h\rightarrow\ 0 } \bruch {-4-\bruch{8}{h}}{-3} [/mm]
hier kommt durch probieren positiv unendlich raus, aber ich weiß wieder nicht, wie man hier durch blankes Betrachten auf "positiv" kommt.

Würd mich sehr freuen, wenn mich hier jemand in die unendlichen Geheimnisse einweiht.
Dankeschön!!
Elvira





        
Bezug
Untersuchung Definitionslücke: kein Problem
Status: (Antwort) fertig Status 
Datum: 10:39 Fr 26.05.2006
Autor: statler


> [mm]f(x) = \bruch {4x-4}{3x+3}[/mm]
>  Untersuchen Sie das Verhalten
> der Funktion f in der Umgebung der Definitionslücke und
> geben Sie die Art der Definitionslücke an.

Hallo Elvira und [willkommenmr]

> meine Vorstellungskraft im Unendlichen ist leider äußerst
> endlich...
>  
> Bei dieser schlichten Aufgabe würd ich so vorgehen:
>  [mm]\limes_{x\rightarrow\ -1 } \bruch {4x-4}{3x+3}[/mm]
>  
> Rechter Grenzwert (-1+h)
>  [mm]\limes_{h\rightarrow\ 0 } \bruch {4(-1+h)-4}{3(-1+h)+3}[/mm]
>  
> aufgelöst:
>  [mm]\limes_{h\rightarrow\ 0 } \bruch {-8+4h}{3h}[/mm]
>  jetzt hab
> ich alles durch h geteilt und was bleibt ist:
>  [mm]\limes_{h\rightarrow\ 0 } \bruch {4-\bruch{8}{h}}{3}[/mm]
>  
> und hier kann ich nicht mehr weiter:
>  - ich seh, dass -1 ein Pol ist, also muss unendlich raus
> kommen
>  - und ich weiß auch, dass wenn der Nenner eines Bruchs
> (wie hier 8 geteilt durch h) gegen 0 geht, dass der Wert
> dann gegen unendlich geht
>  - meine konkrete Frage: geht der Wert nach positiv oder
> negativ unendlich??
>  - durch probieren komm ich auf negativ unendlich, aber man
> soll dies "so" sehen können, ich seh es leider nicht...

Welches Vorzeichen steht denn bei [mm] \bruch{8}{h}, [/mm] wenn ich positive h wähle? h positiv bedeutet [mm] \bruch{8}{h} [/mm] positiv, aber ich ziehe den Bruch ab, also das Ganze negativ. Für negative h's ist es genau umgekehrt, s. u.

> Das gleiche Problem beim linken Grenzwert (wegen
> Vollständigkeit):
>  Linker Grenzwert (-1-h)
>  [mm]\limes_{h\rightarrow\ 0 } \bruch {4(-1-h)-4}{3(-1-h)-3}[/mm]
>  
> aufgelöst:
>  [mm]\limes_{h\rightarrow\ 0 } \bruch {-8-4h}{-3h}[/mm]
>  jetzt hab
> ich alles durch h geteilt und was bleibt ist:
>  [mm]\limes_{h\rightarrow\ 0 } \bruch {-4-\bruch{8}{h}}{-3}[/mm]
>  
> hier kommt durch probieren positiv unendlich raus, aber ich
> weiß wieder nicht, wie man hier durch blankes Betrachten
> auf "positiv" kommt.
>  
> Würd mich sehr freuen, wenn mich hier jemand in die
> unendlichen Geheimnisse einweiht.
>  Dankeschön!!

Da nich für!

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Untersuchung Definitionslücke: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:49 Fr 26.05.2006
Autor: elvira

Vielen lieben Dank!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]