matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenUnters. auf eine Drehmatrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Unters. auf eine Drehmatrix
Unters. auf eine Drehmatrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unters. auf eine Drehmatrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:36 Di 05.02.2013
Autor: mat

Aufgabe
Untersuchen Sie, ob eine Drehmatrix vorliegt:
A= [mm] \pmat{ \bruch{1}{2} & -\bruch{1}{2} & -\bruch{1}{\wurzel{2}}\\ -\bruch{1}{2} & \bruch{1}{2} & -\bruch{1}{\wurzel{2}} \\ \bruch{1}{\wurzel{2}} & \bruch{1}{\wurzel{2}} & 0 } [/mm]

Hallo, mir liegt eine Lösung dieser Aufgabe vor, die mir allerdings nicht 100% klar ist.

Ich muss diese Matrix auf Orthogonalität prüfen, und schliesslich muss die Determinante = 1 sein. Dann ist es eine Drehmatrix.

Die Schritte zur Lösung wären folgende:

1. Prüfe Spaltenvektorlänge (muss 1 ergeben)

2. Püfe paarweise Skalarprodukt der Spaltenvektoren (muss 0 ergeben, da orthogonal)
Soweit klar. In der Aufgabenlösung folgt hieraus aber, dass eine Orthonormalbasis vorliegt. Warum? Ich habe doch überhaupt noch nicht überprüft, ob die Spaltenvektoren eine Basis des [mm] \IR^3 [/mm] bilden. Übersehe ich hier etwas?

3. Determinante berechnen

        
Bezug
Unters. auf eine Drehmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Di 05.02.2013
Autor: leduart

hallo
was ist mit der Determinante wenn die Spalten oder Zeilenvektoren lin abhängig sind?
gruss leduart

Bezug
        
Bezug
Unters. auf eine Drehmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 00:11 Mi 06.02.2013
Autor: Helbig


> Untersuchen Sie, ob eine Drehmatrix vorliegt:
>  A= [mm]\pmat{ \bruch{1}{2} & -\bruch{1}{2} & -\bruch{1}{\wurzel{2}}\\ -\bruch{1}{2} & \bruch{1}{2} & -\bruch{1}{\wurzel{2}} \\ \bruch{1}{\wurzel{2}} & \bruch{1}{\wurzel{2}} & 0 }[/mm]
>  
> Hallo, mir liegt eine Lösung dieser Aufgabe vor, die mir
> allerdings nicht 100% klar ist.
>  
> Ich muss diese Matrix auf Orthogonalität prüfen, und
> schliesslich muss die Determinante = 1 sein. Dann ist es
> eine Drehmatrix.
>  
> Die Schritte zur Lösung wären folgende:
>  
> 1. Prüfe Spaltenvektorlänge (muss 1 ergeben)
>  
> 2. Püfe paarweise Skalarprodukt der Spaltenvektoren (muss
> 0 ergeben, da orthogonal)
>  Soweit klar. In der Aufgabenlösung folgt hieraus aber,
> dass eine Orthonormalbasis vorliegt. Warum?

Es gilt: Stehen n von Null verschiedene Vektoren paarweise aufeinander senkrecht, so sind sie linear unabhängig.

Gruß
Wolfgang

Bezug
                
Bezug
Unters. auf eine Drehmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 Mi 06.02.2013
Autor: mat

Hallo,

ja das war mir bekannt. Knackpunkt war, das ich erst nachweisen wollte dass die 3 Vektoren den [mm] \IR^3 [/mm] aufspannen. Ich merke aber das ist gar nicht nötig, da jeweils 3 linear unabhängige 3-Komponentenvektoren immer den [mm] \IR^3 [/mm] vollständig erzeugen und somit eine Basis sind.

Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]