matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraUnterringe &Ringhomomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Unterringe &Ringhomomorphismus
Unterringe &Ringhomomorphismus < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterringe &Ringhomomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Mo 12.11.2007
Autor: Tobse

Aufgabe
Zeigen oder wiederlegen Sie:
Sei R ein kommutativer Ring mit Eins und [mm] S\not=R [/mm] ein Unterring. Dann gibt es keinen surjektiven Ringhomomorphismus S [mm] \to [/mm] R

Hallo,
das ist meine erste Frage hier. Ich habe mir dazu überlegt, dass das wohl gilt und habe folgenden Beweis:

Sei [mm] \mu: [/mm] S [mm] \to [/mm] R ein Ringhomomorphismus. Da S ein Unterring. von R ist, ist s bezüglich Multiplikation ein Untermonoid von R und enthält damit dasselbe Einselement 1 wie R.
Also gilt für alle s [mm] \in [/mm] S, dass s = s*1 in S und deshalt [mm] \mu(s) [/mm] = [mm] \mu(s*1) [/mm]
Da [mm] \mu [/mm] ein Ringhomomorphismus ist, ist [mm] \mu [/mm] verträglich mit der Multiplikation, dass heißt die Abbildung [mm] \mu [/mm] ist S-linear und [mm] \mu(1) [/mm] = 1. Somit können wir schließen, dass
[mm] \mu(s) [/mm] = [mm] \mu(s*1) [/mm] = s* [mm] \mu(1) [/mm] = s*1 = s
für alle s [mm] \in [/mm] S. Also ist [mm] Im\mu [/mm] = S.
Wegen [mm] S\subsetR [/mm] und [mm] S\not= [/mm] R gibt es daher ein r [mm] \in [/mm] R mit r [mm] \not\in Im\mu. [/mm] Insbesondere kann [mm] \mu [/mm] nich surjektiv sein.

Jetzt wurde mir allerdings heute gesagt, dass die Aussage nicht stimmt. Kann mir wohl jemand sagen, wo mein Fehler ist?
Schon mal danke im Vorraus!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Unterringe &Ringhomomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Mo 12.11.2007
Autor: andreas

hi


> Sei [mm]\mu:[/mm] S [mm]\to[/mm] R ein Ringhomomorphismus. Da S ein
> Unterring. von R ist, ist s bezüglich Multiplikation ein
> Untermonoid von R und enthält damit dasselbe Einselement 1
> wie R.
>  Also gilt für alle s [mm]\in[/mm] S, dass s = s*1 in S und deshalt
> [mm]\mu(s)[/mm] = [mm]\mu(s*1)[/mm]
>  Da [mm]\mu[/mm] ein Ringhomomorphismus ist, ist [mm]\mu[/mm] verträglich mit
> der Multiplikation, dass heißt die Abbildung [mm]\mu[/mm] ist
> S-linear und [mm]\mu(1)[/mm] = 1. Somit können wir schließen, dass
>  [mm]\mu(s)[/mm] = [mm]\mu(s*1)[/mm] = s* [mm]\mu(1)[/mm] = s*1 = s
>  für alle s [mm]\in[/mm] S.

ich denke hier liegt das problem: warum sollte [mm] $\mu$ [/mm] denn $S$-linear sein? [mm] $\mu$ [/mm] ist doch kein $S$-modulhomomorphismus, sondern ein ringhomomorphismus. man kann denke ich nur folgern, dass [mm] $\mu(s) [/mm] = [mm] \mu(s \cdot [/mm] 1) = [mm] \mu(s) \cdot \mu(1) [/mm] = [mm] \mu(s) \cdot [/mm] 1 = [mm] \mu(s)$ [/mm] und das hilft nicht so richtig.

ein konkretes gegenbeispiel habe ich allerdings nicht zur hand. ich könnte mir allerdings vorstellen, dass es etwa für einen körper $K$ mit $R = K[X]$ und $S = [mm] \{f = \sum_{i = 0}^na_i X^i \in R: a_1 = 0 \}$, [/mm] dem unterring der polynome ohne linearem glied, oder ähnlichen konstruktionen funktionieren könnte. diese ringe sind zumindest "groß genug", dass es klappen könnte.

ich wäre auf jeden fall an einem gegenbeispiel interessiert, sofern du eines findest oder eine lösung erhälst.


grüße
andreas

Bezug
        
Bezug
Unterringe &Ringhomomorphismus: idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Mo 12.11.2007
Autor: andreas

hi

was unter umständen auch klappen könnte: sei $K = [mm] \mathbb{F}_2$ [/mm] der körper mit zwei elementen, $R = K[X]$ , $S = [mm] \{f = \sum_{i = 0}^n a_iX^i \in R: a_i = 0 \textrm{ für } i \textrm{ ungerade} \}$ [/mm] und [mm] $\nu: [/mm] R [mm] \longrightarrow [/mm] S; \ f [mm] \longmapsto f^2$. [/mm] dann sollte das ein ringisomorphismus sein (?) und [mm] $\mu [/mm] := [mm] \nu^{-1}$ [/mm] das gewünschte leisten.

grüße
andreas

Bezug
                
Bezug
Unterringe &Ringhomomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Di 13.11.2007
Autor: felixf

Hallo Andreas

> was unter umständen auch klappen könnte: sei [mm]K = \mathbb{F}_2[/mm]
> der körper mit zwei elementen, [mm]R = K[X][/mm] , [mm]S = \{f = \sum_{i = 0}^n a_iX^i \in R: a_i = 0 \textrm{ für } i \textrm{ ungerade} \}[/mm]
> und [mm]\nu: R \longrightarrow S; \ f \longmapsto f^2[/mm]. dann
> sollte das ein ringisomorphismus sein (?) und [mm]\mu := \nu^{-1}[/mm]
> das gewünschte leisten.

Der tut's.

LG Felix


Bezug
                        
Bezug
Unterringe &Ringhomomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:41 Di 13.11.2007
Autor: Tobse

Super! Danke Schön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]