matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperUnterring und Untermodul
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Unterring und Untermodul
Unterring und Untermodul < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterring und Untermodul: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:31 Mo 10.11.2008
Autor: jokerose

Aufgabe
Finden Sie

a) den von x erzeugten Unterring von [mm] \IQ[x]. [/mm]

b) den von x erzeugten [mm] \IQ-Untermodul [/mm] von [mm] \IQ[x]. [/mm]

zu a)
Die Defintion für den von x erzeugten Unterring ist ja wie folgt:

<x> := [mm] \bigcap_{S \in L_{x}} [/mm] S ist der von x erzeugte Unterring von R,

wobei [mm] L_x [/mm] = {S [mm] \subset [/mm] R Unterring | x [mm] \subset [/mm] S}.

Ich denke, dass <x> wie folgt aussehen könnte:

[mm] \{a_{1}x+ ... + a_kx^k , a_i \in \IZ\} [/mm] ?

Doch dann wollte ich zuerst mal zeigen, dass S ein Unterring von [mm] \IQ[x] [/mm] ist.

1.)  (S, +) muss eine Untergruppe von [mm] \IQ[x] [/mm] sein. Dies ist ok.
2.) 0 [mm] \in [/mm] S, ist auch ok.
3.) a , b [mm] \in [/mm] S [mm] \Rightarrow [/mm] ab [mm] \in [/mm] S.
Doch dieser letzte Punkt finde ich unlogisch.
Nehme ich z.B. das Element [mm] 2x^k [/mm] und das Element x. Dann ist das Produkt ja [mm] 2x^{k+1}. [/mm] Und dies liegt dann doch nicht mehr in S, oder?

Was habe ich denn genau falsch gemacht?


zu b)

[mm] \IQ[x] [/mm] = [mm] \IQ \oplus \IQ [/mm] x [mm] \oplus \IQ x^2 \oplus [/mm] ...

Behauptung: [mm] \IQ [/mm] x ist der von x erzeugte [mm] \IQ-Untermodul. [/mm]

Zuerst habe ich gezeigt, dass [mm] \IQx [/mm] überhaupt ein Untermodul ist. Dies hat geklappt.

Doch dann muss ich zeigen, dass (x) = [mm] \IQ [/mm] x.
Da haben dann die Probleme begonnen.

Laut Definition ist (x) := [mm] \bigcap_{N \in U_{x}} [/mm] N, heisst der von x erzeugte Untermodul von [mm] \IQ[x] [/mm]

mit [mm] U_x [/mm] = {N [mm] \subset \IQ[x] [/mm] Untermodul | x [mm] \subset [/mm] N}.

Also, ich möchte zeigen, dass (x) = [mm] \IQ [/mm] x := N.

Zuerst [mm] \subseteq [/mm] :

[mm] \IQ [/mm] x enthält [mm] \IQ, [/mm] also [mm] \IQ \subset \IQ [/mm] x.
[mm] \IQ [/mm] x enthält auch x, also x [mm] \in \IQ [/mm] x.

Also gilt diese Richtung...?

Doch wie könnte ich dann die andere Richtung zeigen?

        
Bezug
Unterring und Untermodul: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:31 Mi 12.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]