matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeUnterraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterraum
Unterraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 Mo 02.11.2009
Autor: Piatty

Aufgabe
a) Bestimmen sie alle Unterräume des [mm] \IR^{2} [/mm]
b) Sei K der Körper mit 2 Elementen. Bestimmen Sie alle Unterräume des [mm] K^{2} [/mm]

Hallo,

ich habe keine Ahnung wie ich dies bestimmen kann...

LG Janika

        
Bezug
Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Mo 02.11.2009
Autor: fred97

Zu a) Der [mm] \IR^2 [/mm] hat die Dimension 2

Sei U  ein Unterraum des [mm] \IR^2. [/mm] Dann gibt es 3 Möglichkeiten:

1. dim U = 2, davon gibt es nur einen, nämlich U = ??

2. dim U = 0, davon gibt es nur einen, nämlich U = ??

3. dim U =1. Davon gibt es viele, aber trotzdem ist es übersichtlich. Wie sieht ein eindimensionaler Unterraum des [mm] \IR^2 [/mm] aus ?


FRED

Bezug
                
Bezug
Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Mo 02.11.2009
Autor: Piatty

Was bedeutet denn Dimension 2, bzw. dim U=2?
Verstehe irgendwie nicht, was ich da genau einsetzen darf...

Bezug
                        
Bezug
Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Mo 02.11.2009
Autor: angela.h.b.


> Was bedeutet denn Dimension 2, bzw. dim U=2?
>  Verstehe irgendwie nicht, was ich da genau einsetzen
> darf...

Hallo,

ist der Basisbegriff bereits bekannt?
Die Dimension eines VRes ist die Anzahl der Basiselemente.
Es geht die Aufgabe aber auch ohne den Dimensionsbegriff zu lösen.

Bei der Suche nach einem Untervektorraum geht es darum, daß Du eine Teilemenge des Vektorraumes findest, welche selber einen VR bildet.

Nun, für die Teilmenge, die nur den Nullvektor enthält und die Teilmenge, die der Raum selber ist, ist das klar.

Nun nehmen wir mal eine Teilmenge U von [mm] \IR^2. [/mm]
Sei Vektor [mm] \vec{v}\in [/mm] U.
Nun überlege Dir, welche vektoren zwangsläufig in U sein müssen, wenn [mm] \vec{v} [/mm] drin ist.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]